

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

INVESTIGATION OF ZERO KNOWLEDGE PROOF APPROACHES BASED
ON GRAPH THEORY

FEBRUARY 2011

FINAL TECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-041

Approved for Public Release; Distribution Unlimited.

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2011-041 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

 MICHAEL S. GUDAITIS WARREN H. DEBANY JR, Technical Advisor
 Chief, Platform Connectivity Branch Information Grid Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for Public Release; Distribution Unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

February 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

May 2009 – July 2010
4. TITLE AND SUBTITLE

INVESTIGATION OF ZERO KNOWLEDGE PROOF APPROACHES
BASED ON GRAPH THEORY

5a. CONTRACT NUMBER
In House

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Victoria Horan
Michael Gudaitis

5d. PROJECT NUMBER
RIGD

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
CM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/RIGD
525 Brooks Road
Rome, NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site
26 Electronic Parkway
Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-041

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2010-6755.
Date Cleared: 3 January 2011.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Zero-knowledge proof systems have many characteristics that are desirable for determining trustworthy parties in an airborne
networking environment. One approach is to base zero-knowledge proof systems on the instances and solutions of NP-complete
problem. This report investigates this approach with a focus on the graph theory problems within the NP-complete and NP-hard
classes.

15. SUBJECT TERMS

Airborne Network Protocol, Zero Knowledge Proof, Graph Isomorphism

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

107

19a. NAME OF RESPONSIBLE PERSON

MICHAEL S. GUDAITIS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Approved for Public Release; Distribution Unlimited.

i

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 1
2. INTRODUCTION ... 2

2.1 Graph Theory Background ... 2
2.2 NP-Completeness ... 3
2.3 Zero-Knowledge Proof Systems .. 4

3. METHODS, ASSUMPTIONS AND PROCEDURES ... 6
3.1 Sub-graph Isomorphism Class ... 6

3.1.1 Sub-graph Isomorphism Problem ... 6
3.1.1.1 Algorithms ... 6
3.1.1.2 Existing Zero-Knowledge Proofs ... 11
3.1.1.3 Discussion of Existing Protocols .. 12
3.1.1.4 Establishing a Better Protocol .. 12

3.1.2 Graph Isomorphism Problem .. 17
3.1.2.1 Algorithms ... 17
3.1.2.2 Discussion of Existing Protocols .. 17

3.1.3 Graph Clustering Problem .. 18
3.1.3.1 Existing Zero-Knowledge Proofs ... 18
3.1.3.2 Discussion of Problem ... 20

3.1.4 Independent Set Problem .. 20
3.1.4.1 Algorithms ... 21
3.1.4.2 Existing Zero-Knowledge Proofs ... 22
3.1.4.3 Discussion of Existing Protocols .. 22

3.1.5 Longest Path Problem ... 24
3.1.5.1 Algorithms ... 25
3.1.5.2 Establishing a Protocol ... 25

3.1.6 Hamiltonian Cycle Problem .. 26
3.1.6.1 Traveling Salesman Problem.. 27
3.1.6.2 Algorithms ... 27
3.1.6.3 Existing Zero-Knowledge Proofs ... 28
3.1.6.4 Discussion of Existing Protocols .. 29

3.1.7 Minimum Bandwidth Problem ... 30
3.1.7.1 Algorithms ... 30
3.1.7.2 Translation to Sub-graph Isomorphism .. 31

3.1.8 Summary ... 32

3.2 Graph Coloring Class ... 33

3.2.1 Graph Coloring Problem ... 33
3.2.1.1 Algorithms ... 34
3.2.1.2 Existing Zero-Knowledge Proofs ... 35
3.2.1.3 Discussion of Existing Protocols .. 37

3.2.2 Equitable Coloring Problem ... 39
3.2.2.1 Application to Zero-Knowledge Proofs ... 39

3.2.3 Summary ... 43

3.3 Other NP-Complete Problems .. 43
3.3.1 Satisfiability .. 43

3.3.1.1 Algorithms ... 43
3.3.1.2 Existing Zero-Knowledge Proofs ... 44
3.3.1.3 Discussion of Existing Protocols .. 46

3.3.2 Graph Partitioning Problem .. 47
3.3.2.1 Algorithms ... 47
3.3.2.2 Establishing a Protocol ... 48

3.3.3 Minimum Label Spanning Tree .. 53

Approved for Public Release; Distribution Unlimited.

ii

3.3.3.1 Algorithms ... 54
3.3.3.2 Creating a Zero-Knowledge Proof System ... 54
3.3.3.3 Coping with Weighted Graphs ... 56

4. RESULTS AND DISCUSSION.. 58
5. CONCLUSIONS AND FUTURE WORK .. 60
6. REFERENCES .. 61
7. LIST OF SYMBOLS AND ABBREVIATIONS .. 67
Appendix: Annotated Bibliography ... 69

Approved for Public Release; Distribution Unlimited.

iii

LIST OF FIGURES

Figure 1: The subproblem structure of the sub-graph isomorphism problem .. 6
Figure 2: Integer Linear Program for SGI ... 10
Figure 3: ZKP1 for the sub-graph isomorphism problem example ... 12
Figure 4: ZKP2 for the sub-graph isomorphism problem example ... 14
Figure 5: ZKP2 for sub-graph isomorphism with cheating prover example .. 16
Figure 6: ZKP3 for the independent set problem example .. 23
Figure 7: Longest path problem example .. 24
Figure 8: ZKP4 for the longest path problem example .. 26
Figure 9: ZKP5 for the Hamiltonian cycle problem example .. 28
Figure 10: An example of the transformation from the traveling salesman problem to the sub-graph

isomorphism problem .. 29
Figure 11: Minimum bandwidth problem example ... 30
Figure 12: The graph coloring class .. 33
Figure 13: ZKP6 for the graph 3-coloring problem example ... 36
Figure 14: ZKP7 for the graph 3-coloring problem example ... 37
Figure 15: ZKP8 for the equitable 3-coloring problem example .. 40
Figure 16: ZKP9 for the satisfiability problem example .. 46
Figure 17: Protocol A for the graph partitioning problem example .. 49
Figure 18: Protocol B for the graph partitioning problem example .. 50
Figure 19: An example of the minimum label spanning tree problem.. 53
Figure 20: An interactive proof system for the minimum label spanning tree problem example 55
Figure 21: An algorithm for the minimum label spanning tree problem with one label 55

Approved for Public Release; Distribution Unlimited.

file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281788
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281790
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281791
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281792
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281793
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281794
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281795
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281796
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281797
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281797
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281798
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281799
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281800
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281801
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281802
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281803
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281804
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281805
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281806
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281807
file:///C:/Users/scatkot/Desktop/ZKP-Horan_Report_071910.docx%23_Toc269281808

1

1. EXECUTIVE SUMMARY

Airborne mobile ad hoc network (MANET) environments require a quick and lightweight
method for authentication. These constantly changing airborne networks (AN) need some way
to identify trustworthy users without a third-party involved. One possible answer to these
requirements is the zero-knowledge proof method. Zero-knowledge proof systems provide an
interactive approach for an entity to prove the possession of private knowledge without revealing
any information about it. Successful challenge/response interactions between a Prover and
Verifier provide a confidence level of trust to the Verifier that the Prover indeed possesses the
private information. The fact that the private knowledge is never revealed provides benefits
towards achieving a protocol that is secure against eavesdroppers. The desirable characteristics
in a zero-knowledge proof system for airborne MANETs are (1) low amount of information (i.e.
bits per transaction) transferred between parties, (2) low number of iterations of the protocol
needed to establish trust, and (3) low probability that an untrustworthy party is able to establish
trust. Characteristics (1) and (2) provide a lightweight protocol, while characteristic (3) ensures
that the protocol is strong.

Since zero-knowledge proof systems require a verifier to check that the information
received from the prover exhibits knowledge of the private input, the base problem (for which
the private input is the solution) must be easily verifiable. However, for the protocol to be hard
to cheat, we must have a base problem that is difficult to solve from scratch. This leads us to
consider base problems that fall in the class of NP-complete problems – computationally
expensive decision problems in which a positive solution can be checked in polynomial-time.
This report investigates the graph theory subset of the class of NP-complete problems and their
use as base problems for zero-knowledge proof systems. In particular, the problems examined
most in-depth are all related to either the sub-graph isomorphism problem or the graph coloring
problem.

In this paper, several approaches are formulated into a zero-knowledge proof system, and
their characteristics are examined. Examples of the following graph problems are given: sub-
graph isomorphism graph isomorphism, independent set, longest path problem, Hamiltonian
cycle problem, graph 3-coloring, equitable 3-coloring, satisfiability, and graph partitioning.

Considering the problem classes discussed, the least promising problem is the
satisfiability problem, due to very efficient algorithms that are able to solve enormous problem
instances very quickly. The most promising group appears to be the sub-graph isomorphism
class. The zero-knowledge proof systems associated with this class of problems are relatively
lightweight in comparison with the other problem classes, and several of the problems in the
class have many difficult instances and few efficient algorithms. The protocols have average
strength in terms of the proof systems for graph-based problems. In comparison, the graph
coloring class has many difficult instances for the problems, but the existing zero-knowledge
proof systems are relatively easy to cheat. This then implies that the proof systems are not as
strong as those in the sub-graph isomorphism class.

Approved for Public Release; Distribution Unlimited.

2

2. INTRODUCTION

In an airborne networking (AN) environment, the mobility of the network users necessitates an
agile authentication system. Zero-knowledge proof systems allow an interaction between parties
to determine trustworthiness in a quick and effective manner. In order to make these interactions
as fast and secure as possible, they are most often based on problems from the NP-complete
class, which contains many graph theory problems. A strong and lightweight zero-knowledge
protocol must satisfy the following criterion: it must have a small number of bits transferred
between parties, it must require few iterations to achieve a given trust level, and it must be
difficult for a cheater to pass as trustworthy.

This report is outlined as follows. Section 2 continues to provide the necessary
background information in graph theory, complexity theory, and zero-knowledge proof systems.
Sections 3 through 5 discuss individual problems that zero-knowledge proof systems can be
based on. Section 6 presents our conclusions and future work. Section 7 lists the relevant
references, and the appendix expands upon that list to provide an annotated bibliography.

2.1 Graph Theory Background

This section is meant as a guide to some of the graph theoretic terms and concepts employed in
this report. For a more extensive reference, it is recommended that the reader consult a textbook
such as Diestel‟s Graph Theory (Diestel 2006).

A graph is a pair such that is a subset of , where is the set of
vertices and is the set of edges in the graph. Vertices can also be called nodes. An edge is
incident to a vertex if the vertex is one of the edge‟s endpoints. Two vertices are adjacent (also
called neighbors) if they are connected by an edge. The degree of a vertex (or valency) is the
number of edges incident to it. An adjacency matrix representation of a graph is a matrix in
which the rows and columns represent the vertices and an entry equal to 1 in row and column
 implies the existence of an edge between vertices and , while an entry equal to 0 implies
that there is no edge between and .

In discussing graphs, we use the following terms. A simple graph is a graph in which
there is at most one edge between distinct vertices and there are no edges from a vertex to itself
(called a loop). We will only deal with simple graphs in this report. The complement

 of a graph is the graph in which and is an edge in if and only
if it is a non-edge in , i.e. . A regular graph is a graph in which
every vertex has the same degree. A labeled graph is a graph with labels (distinct or not distinct)
placed on the vertices or the edges. A weighted graph has edge labels that denote a weight on an
edge. These weights could represent distance or some other measure. An unweighted graph has
no labels on the edges. This could also be defined as a graph with all edge weights equal to 1.
The empty graph is the graph with . A complete graph is a graph in which

Approved for Public Release; Distribution Unlimited.

3

every edge possible is present, i.e. for every pair of distinct vertices , there is an edge
 .

There are many terms for describing the structures present within a graph. A sub-graph
 of a graph is a graph in which and . We denote that is
a sub-graph of by writing . An induced sub-graph of a graph
is a sub-graph of in which . To indicate an induced sub-graph, we
write . A path is a sequence of vertices and edges such that no vertices and no edges
are repeated. A cycle is a path with the exception that the first and last vertices are the same. A
Hamiltonian cycle or path is a cycle or path that travels through every vertex in the graph. The
length of a path or cycle is the number of edges. An independent set is a set in a graph
 such that the edge set of is an empty set. A clique is the complement of an
independent set, i.e. a sub-graph of such that .

Much of this report utilizes the concept of a graph isomorphism. Two graphs
and are isomorphic if there exists a bijective function such that
 if and only if . Less formally, two graphs are isomorphic if they
exhibit the same structures. A sub-graph isomorphism is an isomorphism from a graph to a
sub-graph .

2.2 NP-Completeness

This section is an introduction to some of the theory of NP-completeness and complexity theory
that is utilized in this report. For a more extensive reference, it is recommended that the reader
consult a textbook such as Skiena‟s Algorithm Design Manual (Skiena 2008).

The complexity classes involved in this report are primarily the classes P (Polynomial-
time) and NP (Non-deterministic Polynomial). Because we will not discuss Turing machines in
this report, we will state the somewhat less formal definitions of the complexity classes. The
class NP is the class of decision problems for which any yes-instance has a solution that is
verifiable in polynomial time. The class P contains all decision problems that can be solved in
polynomial time, and hence also have solutions that can be verified in polynomial time, implying
that P NP.

A problem L in the class NP is in the subclass of NP-complete problems if every problem
in NP can be reduced to the problem L in polynomial time. A reduction from problem K to
problem L is an algorithm which takes as input an arbitrary instance of problem K and outputs an
instance of problem L. Given this definition, it is clear that the class of NP-complete problems
contains the hardest problems in the class NP, as an easy solution for one NP-complete problem
leads to an easy solution for all problems in the class NP.

Because of the work published by Cook (Cook 1971), which proves that satisfiability is
the first NP-complete problem, proving an NP-complete problem is somewhat easier than the
definition implies. As Cook proved that satisfiability is reducible to any problem in NP, in order

Approved for Public Release; Distribution Unlimited.

4

to prove a problem is in the class of NP-complete problems, we need only prove that a known
NP-complete problem L reduces to our problem. Then through Cook‟s theorem and following

the chain of reductions from satisfiability to L, we have shown that every problem in the class
NP reduces to our problem.

2.3 Zero-Knowledge Proof Systems

This section is an introductory guide to some of the theory and concepts of zero-knowledge
proof systems that are used in this report. For a more extensive reference, it is recommended
that the reader consult a textbook such as Simmons‟s Contemporary Cryptology (Simmons
1992).

We begin with the notion of an interactive proof system. An interactive proof system is
an interaction between two participants, called the prover and the verifier, in which the prover
attempts to prove some fact (or knowledge of some private input) to the verifier. An interactive
proof system is formally defined as a protocol based on a decision problem which satisfies the
following properties:

Completeness: Each yes-instance of the decision problem leads to acceptance by the
verifier with probability at least for any constant , where is the
size of the problem instance.

Soundness: Each no-instance of the decision problem leads to rejection by the verifier
with probability at least for any prover (honest or cheating).

A zero-knowledge proof system is an interactive proof system with an additional
requirement: the zero-knowledge property must be satisfied. The zero-knowledge property
ensures that the verifier cannot gain any information from the interaction with the prover that
could not have been determined alone. This also guarantees that any eavesdropper cannot gain
knowledge by listening to the conversation. In a zero-knowledge proof system, the interaction
begins with the prover presenting a commitment to some information about the graph, which is
followed by a challenge from the verifier. The challenge consists of a request for specific
information about the problem instance. To prove that the zero-knowledge property is satisfied
in such an interaction, we use simulators. This proof method of the zero-knowledge property is
structured as follows:

1. Verifier simulates the prover
 Given the set of possible challenges, the verifier randomly and uniformly

decides which challenge to commit to a correct response to.

2. Verifier simulates the verifier
 Using a probabilistic algorithm, the verifier decides which challenge to

send.

Approved for Public Release; Distribution Unlimited.

5

 If the challenge does not match what was committed to in step 1, the
verifier backs up the algorithm to the state it was in at the beginning of
step 1 and starts the simulation over.

If the process above generates a conversation that is the same as one that could have been
generated with an honest prover (one that is different from the verifier), then the zero-knowledge
property is satisfied.

An easily understood example of a zero-knowledge proof system illustrates that the
prover knows how to solve a Rubik‟s cube (the algorithm is the private input). The verifier
scrambles a Rubik‟s cube and hands it to the prover. The prover turns away so that the verifier is
unable to see the cube, and then attempts to solve the puzzle. If the prover knows the algorithm,
this will be an easy task and the prover will quickly hand a solved Rubik‟s cube back to the

verifier. If the prover does not know the algorithm, the prover may or may not be able to solve
the puzzle. Most likely, a prover that does not know how to solve a Rubik‟s cube will not easily

solve the puzzle quickly several times in a row, and so the verifier will (eventually) see that the
prover does not know the algorithm. A prover that does know the algorithm will quickly solve
the cube as many times as the verifier wishes.

An important component of a zero-knowledge proof system is the commitment. Zero-
knowledge proof systems usually require that the prover has some method of “locking up”

information about the problem instance prior to receiving the verifier‟s challenge. Otherwise,

the prover would be able to manufacture a response to the verifier‟s challenge, and this new

response may or may not be consistent with the problem instance. For example, in the Rubik‟s

cube zero-knowledge proof system discussed in the last paragraph, the verifier may require that
the prover remain in the same room so that the verifier can be sure that the prover returns the
same Rubik‟s cube given out in the beginning. The structure of a zero-knowledge proof system
is such that a response to any one challenge does not reveal the private input, but responding to
all challenges reveals the private input. Hence the prover must be able to simultaneously commit
to all challenge responses, but reveal each one individually.

There are several different methods for the prover to commit by. The simplest to
understand (but least practical to implement) is to use locked boxes. The prover breaks up the
graph into pieces, which are stored in locked boxes. Then the prover determines which boxes to
open by observing the verifier‟s challenge. Note that the problem type will determine how the
graph is broken up and stored. Another method of commitment is through encryption by keys.
If the prover is able to generate keys, then the prover may encrypt the graph and send the
encrypted copy to the verifier. Then depending on the verifier‟s challenge, the prover sends keys

for decrypting the information necessary to answer the challenge. The methods used vary and is
usually determined by the implementation of the proof system.

Approved for Public Release; Distribution Unlimited.

6

3. METHODS, ASSUMPTIONS AND PROCEDURES

3.1 SUB-GRAPH ISOMORPHISM CLASS

The sub-graph isomorphism class contains many NP-complete problems that can be obtained by
a reduction from the sub-graph isomorphism problem. Figure 1 illustrates the structure of the
sub-graph isomorphism problem and its related subproblems. Note that the chart lists the most
general problem at the top (sub-graph isomorphism) and each subproblem allows more problem
restrictions than the superproblem does. For example, graph isomorphism is a more specific
instance of sub-graph isomorphism in that it requires that . Thus if a problem is NP-

complete, all problems that contain it as a subproblem must also be NP-complete, but not vice
versa.

3.1.1 Sub-graph Isomorphism Problem

The general sub-graph isomorphism problem is stated as follows: Given two graphs and ,
is there a sub-graph of such that is isomorphic to ? The sub-graph isomorphism
problem (SGI) is an NP-complete problem (Garey and Johnson 1979), and has many well-known
subproblems associated with it.

3.1.1.1 Algorithms

In the world of NP-complete problems, there are two ways to define what makes a “good”

algorithm. The first is a theoretical definition, in which the computational complexity of the
problem is reduced for either the general class of all instances or for a specific class of
subproblems. The second is an experimental definition. Using different methods of attacking
the problem, we try to create an algorithm that will solve most instances of the problem in a short
amount of time, but may not be very efficient in some rarely-occurring worst-case instance.

Sub-graph Isomorphism

Graph
Isomorphism

Maximum
Clique

Maximum
Independent Set

Longest
Path

Minimum
Bandwidth

Traveling
Salesman

Hamiltonian
Cycle

Hamiltonian
Path

Figure 1: The subproblem structure of the sub-graph isomorphism problem

Approved for Public Release; Distribution Unlimited.

7

With many useful applications, there is a significant amount of research being done on solving
the sub-graph isomorphism problem using both approaches.

Theoretical Results:

Algorithms classified as theoretical results are aimed at lowering the computational complexity
bounds that currently exist for solving the sub-graph isomorphism problem. These algorithms
generally are not implemented or tested against each other on actual instances of the problem.
Since the general sub-graph isomorphism problem is known to be NP-complete, these algorithms
tend to restrict the problem in some manner in order to make the problem easier to solve.

Many algorithms exist for solving the sub-graph isomorphism problem on specific
classes of graphs. For example, when considering the class of planar graphs we can reduce the
running time significantly. Using a dynamic programming method, Dorn has developed an
algorithm with running time on the order of where the graph H has k nodes and G has n
nodes (Dorn 2009). This implies that if we consider restricting the problem so that the number
of nodes in the sub-graph H is fixed, then becomes a constant and hence the algorithm is
linear.

Another restriction on the set of graphs that has seen good results is to consider only
graphs of bounded tree-width. To define tree-width, we need a few other definitions first (Alon,
Yuster and Zwick 1995).

Definition 1: Let G = (V, E) be a graph. A tree-decomposition of G is a pair

where T is a tree and is a collection of subsets of V such that:
1. ,
2. such that , and
3. , when we restrict T to the vertex set , we still have

a connected tree.

Definition 2: Let G = (V, E) be a graph. Let the set of all tree-decompositions of G be
denoted TD(G). The tree-width of G is:

One of the most recently published randomized algorithms for solving the sub-graph

isomorphism problem is shown to have running time when the tree-width of H is at
most t (Fomin, et al. 2009)1.

1 “ notation hides factors polynomial in the instance size n and the parameter k” - (Fomin, et al. 2009)

Approved for Public Release; Distribution Unlimited.

8

While theoretical results are useful in determining what is possible and impossible in
terms of creating new algorithms for solving the sub-graph isomorphism problem, these methods
are not always practical or useful for implementation and applications. The algorithm may
appear fast in terms of Bachmann-Landau notation (Big-Oh notation), but this can often be
misleading. For example, if an algorithm has computational complexity , it is possible that
the exact running time has some enormous constant term, say . In this case, even though
the algorithm is linear, a running time of

 is going to be very costly. For solving
specific instances of the problem, it may be more efficient to consider an algorithm that has
worse computational complexity in a worst case scenario, but good experimental results on large
databases of graphs.

Experimental Results:

In terms of algorithms that are practical to use, it is necessary to review the results obtained by
implementing the algorithm and testing it on several databases of graphs. While it is not possible
to test the algorithm on every possible graph, we can often get a good idea of how useful an
algorithm will be by running it on specific classes of graphs and instances that are known to be
difficult. The algorithms discussed in this section currently appear to be the most popular for
comparing new algorithms against, and so are generally understood to be the fastest algorithms
currently available. Also included are several new algorithms that appear to perform quite well
against the existing front-runners.

VF2 and Ullman‟s Algorithm are the most popular choices for efficient sub-graph
isomorphism solvers. Published this year (2010) are two different filtering algorithms that seem
promising. Filtering algorithms aim to reduce the number of possible target vertices in the larger
graph for each vertex in the smaller graph to be mapped to under an isomorphism. By repeatedly
reducing the set of target vertices, the filtering aims to eventually obtain a target set of size one,
in which case the mapping is clear (Solnon 2010).

Ullman‟s algorithm, published in 1976, is surprisingly still a popular and fast sub-graph
isomorphism solver. This algorithm uses a backtracking method to solve the problem in an
efficient manner, in most cases (Ullmann 1976). However, it is often costly and outperformed
by newer methods when it comes to larger instances.

Arguably the best solver available, VF2 (also referred to as VFLib) is an algorithm for
solving both the graph and sub-graph isomorphism problems. By defining certain feasibility
rules, VF2 is able to reduce the number of possible options and repeatedly extend a partial
matching until the correct sub-graph is found (Cordella, et al. 2004).

The filtering method ILF (Iterative Labeling Filtering) begins with an initial labeling of
the vertices in both graphs by some invariant property such as vertex degree. An invariant
property of a graph is one that remains constant under isomorphisms. From this it is

Approved for Public Release; Distribution Unlimited.

9

immediately clear that two vertices with different labels cannot possibly be mapped to one
another. The algorithm then expands the lists as multisets (sets with repetition allowed) by
adding the labels of adjacent nodes. This process is repeated as many times as desired. At each
step, the algorithm uses an auxiliary bipartite graph to determine the compatibility of two
vertices (Zampelli, Deville and Solnon 2010 (to appear)).

A new algorithm, AllDifferent-Based Filtering, introduced by Christine Solnon (Solnon
2010) uses a method known as “local all different” (LAD). For each vertex u in our sub-graph
H, and for each possible target vertex v in G for u, the algorithm constructs a bipartite graph with
vertex set (N(u), N(v)), where N(u) is the set of all vertices that are adjacent to u in H. The edges
in this bipartite graph are of the form (u’, v’), where v’ is a possible target vertex for u’. Then the
algorithm searches for a matching in this bipartite graph (an independent set of edges) that
covers all of N(u). If no such matching exists, v is no longer considered as a possible target
for u.

An alternative approach to the problem is to formulate it in a way that takes advantage of
efficient solvers from other problems and areas. One such approach formulates the sub-graph
isomorphism problem as an integer linear program (LeBodic, et al. 2009). We define the
variables of this linear program as follows. We define G = (N, L) and H = (V, E).

 For all pairs of vertices , define

 For all pairs of edges , define

We define the constraints as follows:

 Every vertex of H maps to a unique vertex of G

 (1)

 Every edge of H maps to a unique edge of G

 (2)

 Every vertex of G is targeted by at most one vertex of H

 (3)

 If then any edge starting in maps to an edge starting with

 (4)

 If then any edge ending in maps to an edge ending in
Approved for Public Release; Distribution Unlimited.

10

 (5)

Combining these, it is clear that if we find a solution to this set of constraints then we have a
graph-sub-graph isomorphism. Hence, the objective function of this integer linear program is
irrelevant. If there is some additional information (for example, if the problem is geometric),
then there may be a useful objective function (such as minimizing the distances between nodes).
However if not, we can set the objective function to be some irrelevant constant function. This
gives us the general linear program:

Max

Subject to

and

Figure 2: Integer Linear Program for SGI

Formulating the linear program is now done, and all that is needed is an efficient solver
to work on it. The testing done in (LeBodic, et al. 2009) is on very application-specific instances
(architectural floor plans) making it difficult to evaluate in terms of the more general instances
seen in the graph databases.

Testing of Experimental Algorithms:

While most newly published algorithms are compared against either or both of Ullman‟s

Algorithm and VF2, most are not compared to any other recently developed methods. One
difficulty in comparing the algorithms is that only recently has it become popular to use publicly
available graph databases for testing in a consistent manner, making it difficult to evaluate and
interpret the results that are reported.

The two main databases that are available for testing sub-graph isomorphism algorithms
are the GraphBase database and the VFLib database. Several authors also have created their own

Approved for Public Release; Distribution Unlimited.

11

classes of graphs for testing, such as the scale-free networks database created in (Zampelli,
Deville and Solnon 2010 (to appear)). The Stanford GraphBase2 database provides generators to
create various different classes of graphs and is available free (Knuth 1993). The VFLib Graph
Matching Library was created specifically for the graph isomorphism and sub-graph
isomorphism problems and is also available free of charge (P. Foggia 2001).

On most large instances of the sub-graph isomorphism problem, VF2 outperforms
Ullman‟s Algorithm (see, for example, Figure 15 in (Lipets, Vanetik and Gudes 2009). For this
reason, many authors compare their algorithm only with VF2. One analysis and comparison of
VF2, ILF, and LAD, can be found in (Solnon 2010). This paper shows that LAD usually
outperforms both VF2 and ILF when run on both the GraphBase database and the VFLib
database. However, one thing that is clear is that no solver performs best in every case.

3.1.1.2 Existing Zero-Knowledge Proofs

The zero-knowledge proof systems for the sub-graph isomorphism problem take as public input
two graphs, and , and as private input a sub-graph isomorphism , where is a
sub-graph of . The simplest zero-knowledge proof system for sub-graph isomorphism, ZKP1,
is illustrated in Figure 3. The prover (P) randomly permutes the graph to obtain an
isomorphic graph and then sends to the verifier (V). V then chooses a random
bit , which is sent to P. If , P sends to V and V checks that was formed correctly
from and . If , then P sends to V and V checks that is a sub-graph of
 and is isomorphic to . Depending on the P‟s response to the challenge, V will decide

whether to accept P and continue in another iteration of the protocol or to reject P and stop
communication.

Both isomorphisms (and) are private in the beginning, but if the verifier chooses
 the entire isomorphism is revealed, whereas if the verifier chooses only parts of
the isomorphism are revealed. In neither case is any of the isomorphism revealed to the
verifier. If , the verifier learns the isomorphism , but is unaware of any information
regarding the sub-graph‟s location. If , the verifier learns information about the structure
of the sub-graph, but does not know the isomorphism and hence knows nothing about the
location of the sub-graph.

It is also possible to construct a similar zero-knowledge proof system that involves hiding
the permuted graph in a larger graph (Grigoriev and Shpilrain 2008). However, in this
modification of the protocol, either choice that the verifier can make for requires that the
prover send to the verifier, which leaves the larger graph as an unnecessary addition to the
protocol.

2 Available at http://www-cs-faculty.stanford.edu/~knuth/sgb.html

Approved for Public Release; Distribution Unlimited.

http://www-cs-faculty.stanford.edu/~knuth/sgb.html

12

3.1.1.3 Discussion of Existing Protocols

Considering the algorithms that exist for the graph isomorphism problem (Nauty, VF2, etc.), the
protocol ZKP1 is not very secure. For example, the verifier could use an effective graph
isomorphism algorithm after receiving the graph in step 2. This enables the verifier to
uncover the isomorphism, . If the verifier chooses to send to the prover,
then is revealed by the prover, and so the verifier has available both and
 . This would allow the verifier to discover , and using the graph isomorphism
algorithm again would determine , the prover‟s private input.

3.1.1.4 Establishing a Better Protocol

A slight modification to ZKP1 to establish a more secure protocol involves committing to the
permuted graph that is transferred in step 2. This alteration works fine until the last step that

Figure 3: ZKP1 for the sub-graph isomorphism problem example

Common Input: The bull graph () and the Payley graph () of
order 9 (shown)

Private Input: An isomorphism from to a sub-graph of (
is shown in red)

Prover Verifier

1. Chooses an isomorphism .
2. Sends ’ to the verifier.

3. Chooses a random bit .
4. Sends to the prover.

5. Sends to the verifier.

6. Checks that ’ and that is a
valid isomorphism.

5. Sends to the verifier.
6. Checks that is a sub-graph of ’

that is isomorphic to .

Approved for Public Release; Distribution Unlimited.

13

occurs, in the case that the verifier chooses . If the verifier chooses , then the prover
must reveal where the isomorphic sub-graph is located in . In order for the
verifier to check that is in fact a sub-graph that is isomorphic to , the verifier must
be able to solve this particular instance of the graph isomorphism problem very quickly. Thus
for this change in protocol to be effective, we must be sure that the smaller graph involved is one
in which some graph isomorphism algorithm works well, and yet the problem instance as a
whole must be difficult for all sub-graph isomorphism algorithms, which is not an easy task.

Another small adjustment to fix the faults described is illustrated in Figure 4, referred to
as ZKP2. In this protocol, the prover sends the permutation as well as decommitment
information to reveal the edges of the sub-graph . The verifier would then be able to
check that is isomorphic to . Fortunately, even with increasing the amount of
information transferred, the zero-knowledge property is still satisfied. Since the verifier does not
know or individually, the verifier is unable to determine or alone from the composition
 . Also, since the verifier is only shown the entries of the permuted adjacency matrix that
correspond to edges of the sub-graph, the verifier cannot uncover the initial permutation unless
the verifier is able to solve the sub-graph isomorphism problem.

The protocol ZKP2 is a valid zero-knowledge proof system for the sub-graph
isomorphism problem. (Note: All proofs of zero-knowledge protocols in this report are based
on the proof style of Blum (Blum 1986).)

Claim: ZKP2 is a zero-knowledge proof system for the sub-graph isomorphism problem.
Proof:

Completeness: If the prover has a yes-instance of SGI, then the verifier will accept
with probability 1.

Soundness: If the prover has a no-instance of SGI, the prover will be caught only when
the verifier chooses . Since is chosen uniformly and randomly by the verifier, the
probability that the verifier will reject is in each round. This implies that the

probability that the verifier does not reject after rounds is at most

 .

Zero-Knowledge Property: Suppose the verifier is attempting to extract useful
information from his conversation with the prover. Then the verifier can, in the same
manner, extract the same information even without the aid of the prover. In each round
he does the following:

Approved for Public Release; Distribution Unlimited.

14

Begin.

Verifier simulates the prover. The verifier flips a fair coin and, according to the
outcome of the coin, commits to either the graph or a copy of embedded
into an arbitrary -vertex graph. is committed to in the same way the prover
would have done so. The sub-graph is committed to in the way the prover would
have committed to such an isomorphic sub-graph in . Then, acting as the
prover, the verifier presents the committed information. Now he takes the other
side.

Figure 4: ZKP2 for the sub-graph isomorphism problem example

Common Input: The Payley graph () of order 9 and the bull graph ().

Private Input: An isomorphism from to a sub-graph of
(shown in red).

Prover Verifier

1. Chooses an isomorphism .
2. Creates an adjacency matrix for
3. Sends to the verifier.

(commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment
information for to the verifier.

7. Checks that and that is a
valid isomorphism.

6. Sends the decommitment
information for the entries of A
that correspond to edges of
 to the verifier.

7. Sends the permutation to
the verifier.

8. Checks that is isomorphic to ,

and that is what was revealed.

Approved for Public Release; Distribution Unlimited.

15

Verifier simulates the verifier. The verifier guesses randomly and uniformly
whether to request the graph or an isomorphic sub-graph. Because the verifier has
no way to guess with any advantage whether the committed matrix contains the
graph or an isomorphic sub-graph (because the choice is random), there is a 50%
chance that he requests an option (graph or sub-graph) that the verifier, in the
guise of prover, can supply. If not, the verifier backs up the simulation to the
state it was in at the start of this round and restarts the entire round (verifier
simulating the prover).

End.

In an expected 2 passes through each round, the verifier will obtain the information
without the help of the prover. Thus the interaction does not help the verifier do
something with the prover in expected polynomial time that he could not as well have
done without the prover in expected polynomial time.

Consider the zero-knowledge proof system ZKP2 for the sub-graph isomorphism

problem. This protocol shows the basic structure of all of the protocols in this section. Figure 5
illustrates the protocol in the case that the prover is attempting to cheat. The prover does not
have a valid isomorphism from to a sub-graph of , and the verifier must catch this.

In order for these zero-knowledge proof systems to be of use, we must determine the total
number of bits to be transferred. In ZKP2, the graphs that we are considering are simple,
undirected graphs. This implies that the adjacency matrices will be symmetric with zeros along
the diagonal and with all entries equal to either 0 or 1. Thus in a graph with vertices, the
prover only needs to transmit

 entries of to the verifier, where . Hence step 3

requires the transmission of

 entries, each of which is one bit. In step 5, the verifier sends one

bit. If the verifier chooses , the prover must send the isomorphism . We can send this in
list form, and so we need bits. If the verifier chooses , the prover must identify
the isomorphism and must send the permutation to the verifier. This requires
sending decommitment information for the edges corresponding to and also sending a
permutation in list form with entries.

When considering the maximum number of bits that will be necessary in ZKP2 not

including what is needed for commitment methods, the number transferred will be:

 (6)

Approved for Public Release; Distribution Unlimited.

16

If the maximum amount of information to be transmitted is 10 kilobits, then we must have:

 (7)

 (8)

Thus the largest instance that could be considered would have at most 134 vertices in the larger
of the two graphs. Note that this maximum occurs given any choice that the verifier makes for .

Figure 5: ZKP2 for sub-graph isomorphism with cheating prover example

Common Input: The Payley graph () of order 9 and the bull graph ().

Private Input: An invalid isomorphism from to a sub-graph of
 (shown in red).

Prover Verifier

1. Chooses an isomorphism .
2. Creates an adjacency matrix for
3. Sends to the verifier.

(commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment
information for to the verifier.

7. Checks that and that is a
valid isomorphism.

6. Sends the decommitment
information for the entries of A
that correspond to edges of
 to the verifier.

7. Sends the permutation to
the verifier.

8. Sees that is not isomorphic to

and so rejects the prover.

Approved for Public Release; Distribution Unlimited.

17

3.1.2 Graph Isomorphism Problem

The graph isomorphism problem (GIP) is stated as follows: Given two graphs and , is
there an isomorphism ? The GIP is known to belong to the class NP, but it has not
been determined to be NP-complete. It is conjectured that the GIP falls somewhere outside of
the classes P and NP-complete (Conte, et al. 2004).

3.1.2.1 Algorithms

The three main algorithms for solving the graph isomorphism problem are Nauty (1981),
Ullman‟s algorithm (1976), and VF2 (2004). All three algorithms are able to solve instances of

the problem at remarkable speeds. However, VF2 seems to consistently outperform Ullman‟s

algorithm (Cordella, et al. 2004), so the focus of this section will be on Nauty and VF2.

The Nauty algorithm, created by Brendan McKay (McKay 1981), uses a large amount of
group theory to determine a canonical labeling of the graphs (Fortin 1996). The main idea of the
algorithm is then centered on the fact that if the labelings of the two graphs are the same, then the
graphs must be isomorphic. VF2, on the other hand, relies upon backtracking and pruning the
search space according to some specified feasibility rules (Cordella, et al. 2004).

In comparing VF2 and Nauty, neither algorithm clearly outperforms the other. In the
results of a set of tests comparing the two algorithms on three different classes of graphs ranging
from 20 to 1,000 vertices, Nauty appears to be more effective on random graphs, while VF2 is
more effective on 2D-mesh graphs and bounded valence graphs (Cordella, et al. 2004). In
further testing, it is shown that on all benchmark classes of graphs that were selected with a
maximum of 1100 vertices, at least one of VF2 and Nauty can solve the problem instance in less
than one second (Foggia, Sansone and Vento 2001).

While it has not yet been determined which classes of graphs the algorithms Nauty and
VF2 struggle with, one idea has appeared in the literature (Fortin 1996), (Hernandez-Goya and
Caballero-Gil 2004). It is possible to create hard instances of the GIP by swapping the endpoints
of two different edges in a highly symmetric regular graph. It is reported that the resulting graph
will be several hundred times harder for Nauty (Fortin 1996).

3.1.2.2 Discussion of Existing Protocols

Given the efficiency of the existing algorithms, the graph isomorphism problem will be
difficult to use as a base problem for a secure protocol. However, we will discuss two types of
zero-knowledge proof systems for the graph isomorphism problem. The first type of zero-
knowledge protocol that exists for the graph isomorphism problem is identical to that of the sub-
graph isomorphism problem. The only difference between protocols for the two problems is that
the sub-graph is no longer a proper sub-graph, but the entire graph, i.e. .

Approved for Public Release; Distribution Unlimited.

18

The second type of zero-knowledge proof system works only for the graph isomorphism
problem. The protocol takes as public input two graphs and and as private input an
isomorphism . First, the prover creates an isomorphic copy of (say

) and sends the copy to the verifier. The verifier chooses a challenge bit and sends that
choice to the prover. If the verifier sent a challenge bit equal to zero, then the prover sends to
the verifier and the verifier checks that . If the verifier sent a challenge bit equal to
one, then the prover sends to the verifier, who checks that (Goldreich,
Micali and Wigderson 1991), (Hernandez-Goya and Caballero-Gil 2004), (Simari 2002),
(Grigoriev and Shpilrain 2008).

As mentioned, the ease with which the current algorithms are able to solve exactly the
graph isomorphism problem makes these protocols mostly useless. Unless a class of difficult
instances is determined, the protocols are not secure, even though they satisfy the necessary
properties for a zero-knowledge proof system.

3.1.3 Graph Clustering Problem

The graph clustering problem (GCP) is a more general case of both the graph isomorphism and
the graph non-isomorphism problem (the complement of the graph isomorphism problem). The
GCP as defined as follows (Goldreich 1996): Given a sequence of graphs , and a
sequence of positive integers , does there exist a partition of such that:

1. for .
2. For all and every , the graphs and are isomorphic.
3. For all and all and all , the graphs and are not

isomorphic.

In other words, we are looking to determine if under the equivalence relation of graph
isomorphisms, the sizes of the equivalence classes are represented by the given sequence of
positive integers.

3.1.3.1 Existing Zero-Knowledge Proofs

The following noninteractive zero-knowledge protocol for GCP relies upon several foundational
theorems. The first theorem states that we can construct a monotone formula that determines the
value of in polynomial-time, where is a Boolean function
with each being a Boolean variable that returns true if and only if at least of the variables
 are true. The second and third theorems state that there exists a perfect zero-knowledge proof
system for all instances of true monotone formulae over statements related to graph (non-
)isomorphism (DeSantis, Di Crescenzo and Persiano, et al. 1994).

Approved for Public Release; Distribution Unlimited.

19

The zero-knowledge proof system discussed below, published by (DeSantis, Di Crescenzo and
Goldreich, et al. 1999), takes as public input a sequence of graphs and a sequence of positive
integers.

1. The prover P proves that the equivalence relation has at least equivalence classes.

Determining that at least – graphs are non-isomorphic to all earlier graphs in the
initial sequence proves this statement. To accomplish this, we use the first and third
theorems to prove in zero-knowledge that , where
 .

2. P proves that the equivalence relation has at most equivalence classes.

Determining that at most – – – graphs are isomorphic to all earlier graphs
in the initial sequence proves this statement. To accomplish this, we use the first and
second theorems to prove in zero-knowledge that ,
where .

3. P proves that at least a certain number of equivalence classes have a given minimum

size.

We first define , such that , and
define for each . P proves the statements:

for

This is done by proving in zero-knowledge where:
 .

4. P proves that at least a certain number of equivalence classes have a given maximum

size.

Using the same definitions as in step 3, P proves the statements:

 for

This is accomplished by proving in zero-knowledge

 where:
 .

Approved for Public Release; Distribution Unlimited.

20

To prove that this is in fact a noninteractive zero-knowledge protocol, we note that and
 hold if and only if there are exactly equivalence classes in the sequence of graphs. Also,
through basic algebraic manipulation and induction, it is easily proven that statements and
hold for every if and only if the equivalence classes have the correct sizes as specified by the
sequence of positive integers (DeSantis, Di Crescenzo and Goldreich, et al. 1999). Since the
protocol is a composition of zero-knowledge protocols based on the function, the
protocol is also zero-knowledge.

3.1.3.2 Discussion of Problem

It does not appear to have been discussed in the literature as to whether GCP is an NP-complete
problem or not. It is clear that it lies in the class NP, as given a true instance of the GCP, a
witness for the problem is a set defining the partitions together with a set of isomorphisms from
each graph to another in the same partition class, and this witness can be easily verified. We do
note, however, that when our sequence of positive integers is then the problem is an
instance of the graph non-isomorphism problem, and when our sequence of positive integers is
 then the problem becomes an instance of the graph isomorphism problem. Thus we can see
that GCP is at least as hard as the graph isomorphism and graph non-isomorphism problems, and
that determining the complexity of the graph (non-)isomorphism problem will determine the
complexity of the graph clustering problem.

While no information has been found yet as far as algorithms for solving the graph
clustering problem, it should be noted that the problem can be solved by repeatedly applying any
algorithm for solving the graph isomorphism problem. In the worst case, each graph would be in
a separate equivalence class. This would then imply that any graph isomorphism algorithm
would need to be applied to the instance fewer than – times in order to determine the
equivalence classes (each graph needs only to be compared to one graph in each equivalence
class determined before). Thus in instances where the decision version of the graph
isomorphism problems involved can be determined in under seconds, the entire graph
clustering problem instance could be solved in under seconds. Due to the significantly
increased amount of information needed for the problem, namely the sequence of graphs, the
graph clustering problem is most likely not a good candidate for a security protocol.

3.1.4 Independent Set Problem

The independent set problem (ISP) is stated as follows: Given a graph and an integer , does
 contain an independent set of size ? This question is the decision version of an optimization
problem known as the maximum independent set problem. The optimization (maximum)
independent set problem is as follows: Given a graph , what is the size of a maximum
independent set in ? The optimization problem is an NP-hard problem and the decision version
is a well-known NP-complete problem (Garey and Johnson 1979).

Approved for Public Release; Distribution Unlimited.

21

Another NP-complete problem that is equivalent to the ISP is the maximum clique
problem (MCP). The MCP is stated as follows: Given a graph and an integer , does
contain a clique of size ? The equivalence of the two problems can be seen clearly when we
observe that the complement of an independent set is a clique and vice versa. Thus given any
instance of the ISP, we can easily convert it to an instance of the MCP merely by considering the
complement of the graph in question.

A problem closely related to the ISP is the -independent set problem (KIS). The
problem is stated as follows: Given a graph and positive integers and , does there exist a -
independent set (a set of vertices such that between any two distinct vertices in the set, the length
of the shortest path between them is at least) of size ? The KIS is an NP-complete problem –
a fact that is clearly seen when we observe that the ISP is a subproblem of the KIS (Desmedt and
Wang 2003).

3.1.4.1 Algorithms

Several near-optimal algorithms have been proposed to deal with the ISP and the MCP. In a
relatively recent publication, it was reported that the most competitive algorithms are DLS
(Dynamic Local Search), RLS (Reactive Local Search), and VNS (Variable Neighborhood
Search) (Grosso, Locatelli and Pullan 2008). While these algorithms are geared towards the
MCP, the equivalence of the MCP and the ISP allows the algorithms to be used easily on either
problem.

DLS-MC, a DLS variant, was introduced in 2006 (Pullan and Hoos 2006) and is based on
stochastic local search. It assigns penalty values to the vertices in order to help the algorithm
avoid cycling around local optima. The creators conclude from their testing that the DLS-MC
outperforms several older algorithms and improves upon the previously existing DLS algorithms.
The RLS algorithm was improved upon in 2007, and so has been replaced by R-Evo and RLS-
Evo. These modified RLS algorithms both begin by obtaining an initial estimate, after which a
better solution is searched for. They employ a model-based approach in which the current
solution is used to provide information about possible locations of a better solution (Battiti and
Brunato 2007). An efficient algorithm that often outperforms RLS is KLS. KLS is based on the
technique of variable depth search, a variation of local search, and proceeds by adding and
removing vertices from the current clique in order to find a larger one (Katayama, Hamamoto
and Narihisa 2005).

The general result of the published material on ISP or MCP algorithms is that there is no
“best” algorithm for every instance of the problem. Fortunately, there is a standard set of
benchmark graphs that most algorithms are tested and compared on. These benchmarks, known
as the DIMACS benchmark instances for the maximum clique problem, originated from The
Second DIMACS Implementation Challenge: 1992-1993 (Johnson and Trick 1996). The
DIMACS graphs range in size from under 100 vertices to 4,000 vertices, however it is not clear

Approved for Public Release; Distribution Unlimited.

22

what determines the difficulty level of the graphs. Reviewing the published results, it appears
that almost every DIMACS benchmark graph can be solved for the best known solution in less
than 200 seconds.

3.1.4.2 Existing Zero-Knowledge Proofs

The zero-knowledge proof systems for the independent set problem take as public input a graph,
 , and a positive integer , and as private input a set , where is an independent set. A
zero-knowledge proof system (ZKP3) for the ISP is illustrated in Figure 6 (Desmedt and Wang
2003). The prover (P) chooses randomly an isomorphism to permute the graph and then
sends a commitment to this new graph, , to the verifier (V). V then chooses a random bit ,
which is sent to P. If , P sends to V along with the decommitment information for ,
and V checks that was formed correctly from and . If , then P sends the
decommitment information for to V, who checks that has all entries equal to
zero. This then implies that is an independent set.

3.1.4.3 Discussion of Existing Protocols

When we consider the soundness property of ZKP3, a cheating prover with a no-instance of the
problem will only be caught when the verifier chooses . As the verifier chooses
randomly and uniformly from the set , the probability that a cheating prover will be caught
in each round is . Thus the probability that a verifier will not reject a cheating prover after

rounds is

, and so the soundness property is satisfied. The protocol ZKP3 also satisfies the
completeness and zero-knowledge properties and therefore is a zero-knowledge proof system
(Desmedt and Wang 2003).

Because of the equivalence between the independent set problem and the maximum
clique problem, ZKP3 can be slightly modified to give a valid zero-knowledge proof system for
the MCP. The only change that needs to be made is in the last step that occurs after a verifier
chooses . Instead of checking that every transferred matrix entry is zero, the verifier must
check that every entry that is not along the diagonal is equal to one. This then demonstrates that
the sub-graph revealed is in fact a complete graph, as every pair of distinct vertices has an edge
between them.

Approved for Public Release; Distribution Unlimited.

23

The protocol ZKP3 can also be altered to handle the KIS. First, define the set to be
the set of all pairs of vertices such that the length of the shortest path between and in
 is at most , and let . Then we define . A set is a -
independent set in if and only if is an independent set in . By using as the common
input to ZKP3, we have a zero-knowledge proof system for the KIS (Desmedt and Wang 2003).

Common Input: The wheel graph () of order 9 (shown) and a
positive integer .

Private Input: An independent set of size (shown in red)

Prover Verifier

1. Chooses an isomorphism .
2. Creates an adjacency matrix for ’
3. Sends to the verifier.

(commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment
information for to the verifier.

7. Checks that .

6. Sends the decommitment
information for to the
verifier.

7. Checks that all entries of are
equal to 0.

Figure 6: ZKP3 for the independent set problem example

1 2

3

4

5 6

7

8

0

Approved for Public Release; Distribution Unlimited.

24

3.1.5 Longest Path Problem

The longest path problem (LPP) is stated as follows: Given a graph and a positive integer ,
does contain a path of length ? (We are using the assumption that the length of a path is the
number of edges of the path.) Figure 7 illustrates an example of the LPP. The more commonly
known version of the longest path problem is an optimization problem that asks for a witness for
the value . Our phrasing of LPP is merely the decision version that
corresponds to the optimization problem. The LPP is an NP-complete problem, and contains the
Hamiltonian path problem as a subproblem. However, the LPP is a more difficult problem than
the Hamiltonian path problem as the longest path in the graph does not necessarily travel through
every vertex. It is an easy reduction from the Hamiltonian path problem to the LPP, and hence
the NP-completeness is clear. The optimization version of the problem is NP-hard. There are
few graph classes that are known to be easily solvable (in polynomial time). One class of graphs
that can be solved quickly is the class of directed acyclic graphs (Garey and Johnson 1979).

Consider the complete binary tree on 7 vertices, as shown.

The maximal paths in the tree are:

1. (3, 1, 4) length = 2
2. (3, 1, 0, 2, 5) length = 4
3. (3, 1, 0, 2, 6) length = 4
4. (4, 1, 0, 2, 5) length = 4
5. (4, 1, 0, 2, 6) length = 4
6. (5, 2, 6) length = 2

In this example, the maximum path length is 4. Hence we have:

A witness for this value is the path .

3 4

5

6

1

2

0

Figure 7: Longest path problem example

Approved for Public Release; Distribution Unlimited.

25

3.1.5.1 Algorithms

There are few algorithms that are capable of coping with the LPP. Even approximation
algorithms are difficult to come by, as the optimization problem associated with the LPP is
thought to lie outside of the class of problems APX - the class of optimization problems for
which polynomial-time approximation algorithms with approximation ratios bounded by
constants exist (Björklund and Husfeldt 2003). In fact, it has been proven that the longest path
problem must lie outside of APX unless P = NP (Karger, Motwani and Ramkumar 1997).

It seems that one of the best performing algorithms currently is a hybrid depth-first-
search algorithm that produces either an exact solution to the problem instance in
time, where for some , or an -approximation, for
any that is an unbounded function (Vassilevska, Williams and Woo 2006). Another possible
option is applying a sub-graph isomorphism algorithm to the problem, since the length of the
longest path will be available as common knowledge in the zero-knowledge proof system
considered for this problem.

3.1.5.2 Establishing a Protocol

Because the LPP is a subproblem of the SGI, we can modify ZKP2 slightly to obtain ZKP4, a
zero-knowledge proof system for the longest path problem. The common inputs to the protocol
are a graph, , and a positive integer, , which represents the length of a longest path in . The
private input is the longest path itself.

Figure 8 illustrates a zero-knowledge proof system, ZKP4, for an instance of the LPP.
The prover (P) chooses randomly an isomorphism to permute the graph and then sends a
commitment to this new graph, , to the verifier (V). V then chooses a random bit , which
is sent to P. If , P sends to V along with the decommitment information for , and V
checks that was formed correctly from and . If , then P sends the decommitment
information for to V (where represents the entries corresponding to the edges of the
path that is the private input) and V checks that forms a path of the specified length.

Note that in ZKP4 the prover does not need to send any information in addition to the
edges of the path to the verifier. The permutations used by the prover are unnecessary
information for the verifier, as checking that the edges revealed form a path is a simple task
without the knowledge of the permutations. The prover also does not need to identify the
vertices that are endpoints on the path, as the verifier can determine these from the revealed
entries by examining which rows and columns have one and only one entry equal to 1.

Approved for Public Release; Distribution Unlimited.

26

3.1.6 Hamiltonian Cycle Problem

The Hamiltonian cycle problem (HCP) is stated as follows: Given a graph , does contain a
Hamiltonian cycle (a cycle that passes through every vertex of the graph once and only once)?
The HCP is one of the best known NP-complete problems, and is used often in proving other
problems to be NP-complete (Garey and Johnson 1979). There are several closely related NP-
complete problems, such as the Hamiltonian path problem, the directed Hamiltonian cycle
problem, and the Hamiltonian path between two points. Some cases of the HCP are known to be

Common Input: The complete binary tree () of order 7 (shown)
and a positive integer .

Private Input: A path of length (shown in red)

Prover Verifier

1. Chooses an isomorphism .
2. Creates an adjacency matrix for ’
3. Sends to the verifier.

(commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment
information for to the verifier.

7. Checks that .

6. Sends the decommitment
information for the entries of
 that correspond to the edges
of to the verifier.

7. Checks all entries of are equal to 0.

3 4

5

6

1

2

0

3 4

5

6

1

2

0

Figure 8: ZKP4 for the longest path problem example

Approved for Public Release; Distribution Unlimited.

27

easy (solvable in polynomial-time), such as if has no vertex with degree greater than two or if
 is a line graph.

3.1.6.1 Traveling Salesman Problem

The HCP has a very well-known subproblem: The Traveling Salesman Problem (TSP). The
TSP is stated as follows: Given a graph with weighted edges, find a Hamiltonian cycle with
the minimum total weight possible. Given an instance of the HCP, it is easy to create an instance
of the TSP. Let be an instance of HCP. Construct from as follows: Let
and define the edge set as . Assign edge weights as follows: For
 ,

 (9)

If the minimum tour weight of is equal to , then the graph has a Hamiltonian
cycle. The TSP is an NP-hard optimization problem, and the decision version of the problem
(does have a tour with total weight less than or equal to some value) is an NP-complete
problem (Garey and Johnson 1979).

3.1.6.2 Algorithms

Since the Hamiltonian cycle problem is a specific case of both the sub-graph isomorphism
problem and the traveling salesman problem, any algorithm for solving the SGI or the TSP will
also work to solve the Hamiltonian cycle problem. As the TSP is such a well-known and well-
researched problem, it is highly likely that the best performing algorithms for the HCP will in
fact be TSP algorithms.

A popular TSP algorithm is the Lin-Kernighan (LK) algorithm. The LK algorithm starts
with an arbitrary trail that reaches all vertices of the graph (and may include passing through
some vertices more than once). It then switches paths on the trail in order to shorten it if possible
(Marinakis, Migdalas and Pardalos 2005).

Concorde, an exact algorithm for the TSP, is able to solve optimally 106 out of the 110
instances of the TSP in the TSPLIB3 (a publicly available library of problem instance for the
TSP). Of these instances, the largest involves 15,112 cities (Skiena 2008). It is also reported
that for the six instances from TSPLIB with between 1000 and 1200 nodes, an algorithm known
as the LKH algorithm (Helsgaun 2000) is able to obtain a solution that is no more than 0.2%
from the optimal in less than 20 seconds (Johnson and McGeoch, Experimental Analysis of
Herustics for the STSP 2002). Because of this, the instances considered for testing of the
algorithms for The Eighth DIMACS Implementation Challenge (2001) did not include any with

3 Available at http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

Approved for Public Release; Distribution Unlimited.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

28

fewer than 1000 nodes (Johnson and McGeoch 2002). These benchmark instances appear to be a
mixture of real-world and randomly generated problems.

3.1.6.3 Existing Zero-Knowledge Proofs

The zero-knowledge proof systems for the HCP have as common input a graph, , that contains
a Hamiltonian cycle, and as private input a Hamiltonian cycle, , in (note that may contain
more than one Hamiltonian cycle). Figure 9 illustrates a zero-knowledge proof system, ZKP5,

Common Input: The platonic graph of the cube () of order 8
(shown)

Private Input: A Hamiltonian cycle (shown in red)

Prover Verifier

1. Chooses an isomorphism .
2. Creates an adjacency matrix for ’
3. Sends to the verifier.

(commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment
information for to the verifier.

7. Checks that .

6. Sends the decommitment
information for the entries of
 that correspond to the edges
of to the verifier.

7. Checks that all entries of are equal to
1 and that is a Hamiltonian cycle.

0

1

2

3

4

5

6

7

Figure 9: ZKP5 for the Hamiltonian cycle problem example

Approved for Public Release; Distribution Unlimited.

29

for an instance of the HCP (Blum 1986). The prover (P) chooses randomly an isomorphism to
permute the graph and then sends a commitment to this new graph, , to the verifier (V).
V then chooses a random bit , which is sent to P. If , P sends to V along with the
decommitment information for , and V checks that was formed correctly from and
 . If , then P sends the decommitment information for to V (where represents
the entries corresponding to the edges of the cycle that is the private input) and V checks that
 forms a Hamiltonian cycle.

The zero-knowledge proof system ZKP5 is just one possible protocol for the HCP. A
similar protocol has been published, and the main difference is a reliance on hashing to hide the
information that is committed to in ZKP5 (Caballero-Gil and Hernandez-Goya 2006). There is
also available a third protocol that assumes that families of collision-free hash functions exist in
order to provide a statistical noninteractive zero-knowledge argument with preprocessing
(Damgard 1992).

3.1.6.4 Discussion of Existing Protocols

While it may seem tempting to use the same HCP protocol (ZKP5) for the TSP, unfortunately
the zero-knowledge property will no longer be satisfied. Because the graph has weighted edges,
when the prover reveals the edges of the cycle the verifier will learn information about the edge
weights associated with the cycle. For example, if every edge has a different weight in the
graph, the verifier will easily be able to identify the TSP tour that is supposed to remain hidden.
To create a valid zero-knowledge proof system for the TSP, we must transform the given
problem into an instance of the sub-graph isomorphism problem. Given a weighted graph
 for the TSP (being the set of edge weights associated with the graph), we
construct a new graph as follows. For every edge with , we replace
with , a path with edges (both endpoints of are the endpoints of). This is illustrated in
Figure 10. The problem is now to find a path in the new graph of length equal to the minimum

1

2 3

4

1

2 3

4

14

24 34

23

Figure 10: An example of the transformation from the traveling salesman

problem to the sub-graph isomorphism problem

Approved for Public Release; Distribution Unlimited.

30

TSP weight in the original graph.

3.1.7 Minimum Bandwidth Problem

The minimum bandwidth problem (MBP) is stated as follows: Given a graph and a positive
integer , find a linear arrangement of the vertices (a bijective numbering)
such that . This decision problem is an NP-complete problem,
and the associated optimization problem (find the minimum value of)

is an NP-hard problem (Garey and Johnson 1979). Figure 11 illustrates an example of the MBP.

3.1.7.1 Algorithms

Very few algorithms are able to cope with the MBP efficiently. Both exact and approximate
algorithms exist for the problem. As of 2008, the best exact algorithm has time complexity
 , where is a polynomial function (Cygan and Pilipczuk 2008). It seems to be an

Consider the graph shown. We want an ordering of the vertices and such that the bandwidth of
the ordering is at most 1.

In this example, the possible orderings are:

1. [A, B, C] Bandwidth = 2

2. [A, C, B] Bandwidth = 2

3. [B, C, A] Bandwidth = 2

4. [B, A, C] Bandwidth = 1

5. [C, A, B] Bandwidth = 1

6. [C, B, A] Bandwidth = 2

So the bandwidth desired is obtained by both ordering 4 and ordering 5.

A

B C

Figure 11: Minimum bandwidth problem example

Approved for Public Release; Distribution Unlimited.

31

open problem as to whether the problem can be solved in time, where is a
polynomial function (Woeginger 2003). As for approximation algorithms, as of 2003 the best
known approximation algorithm has an approximation ratio
(Woeginger 2003). In 2005, a hybrid algorithm was presented that produces either an ordering
that obtains, in time, the optimal minimum bandwidth or, in polynomial time, an
 -approximation (Vassilevska, Williams and Woo 2006).

A set of useful benchmark instances are available for the minimum bandwidth problem.
The Harwell-Boeing Sparse Matrix Collection (Duff 1992) presents many instances in a range of
sizes that originate from real-world applications. While these instances are not generated in any
uniform manner, there are several classes that the algorithms all seem to struggle with. For
example, the “Cannes” matrices, with instances named can_###, stem from aircraft design. This
class of instances appears to be difficult for many algorithms when the order is larger than 200.
When the order is greater than 800, as in can_838, most algorithms are unable to solve it exactly
(Lim, Rodrigues and Xiao 2006). It would be worth investigating what makes these instances so
difficult for the algorithms.

3.1.7.2 Translation to Sub-graph Isomorphism

The minimum bandwidth problem can be viewed as a subproblem of the sub-graph isomorphism
problem. Because of this property, any zero-knowledge proof system for the sub-graph
isomorphism problem can be applied to the minimum bandwidth problem. Let be a graph with
minimum bandwidth . Define to be the path of length with additional edges added
between every pair of vertices that are at distance at most apart (on the original path). Then
the minimum bandwidth problem can be restated as follows: Given a graph on vertices, find
an isomorphism , where

 . The discovered isomorphism from to a
sub-graph of

 will then give a linear order for with bandwidth at most .

For the example illustrated in Figure 3-10, we consider the path
 . In this case, there

exists an isomorphism that maps to
 . One possible mapping is given by:

 , , and (10)

Thus the isomorphism gives us a linear ordering identical to ordering number 4 in the example.
We may also consider the problem of finding a linear order for with bandwidth at most 2.
In this case, we consider the path

 . It is clear that in this case, any of the orderings illustrated
can be mapped isomorphically to a sub-graph of

 .

 This process of transforming the MBP to the SGI allows us to employ the same zero-
knowledge proof system for the MBP. The common inputs to the protocol are a graph and the
value of the minimum bandwidth of the graph. The private input is a linear ordering of the
vertices that has bandwidth . The prover permutes the path

 , and sends a commitment to
Approved for Public Release; Distribution Unlimited.

32

this to the verifier. The verifier then chooses randomly whether to check if the isomorphism was
constructed correctly or if there is an isomorphic copy of the graph in

 .

3.1.8 Summary

The sub-graph isomorphism class contains many problems that may be useful as base problems
for zero-knowledge proof systems. The minimum bandwidth problem, for example, appears to
be a difficult problem with relatively few efficient algorithms to solve it. The same is true of the
longest path problem. The Hamiltonian cycle problem or the Hamiltonian path problem may be
difficult as well, however the longest path problem intuitively seems harder. The Hamiltonian
problems require that all vertices be members of the required cycle or path, whereas in the
longest path problem a solver must not only find a path of the required length but must also
determine which vertices the path traverses.

One problem that will almost certainly not be useful in creating a secure protocol is the graph
isomorphism problem. The current algorithms (Nauty and VF2, for example) are far too
efficient at solving large problem instances. In order to create a secure protocol off of the graph
isomorphism problem, we would need to use extremely large graphs (over 10,000 nodes), which
then dramatically increases the amount of information to be transferred between prover and
verifier.

Approved for Public Release; Distribution Unlimited.

33

3.2 GRAPH COLORING CLASS

The graph coloring class of problems contains three important problems: graph -colorability,
graph 3-colorability, and equitable 3-colorability. All three problems are NP-complete. Graph
3-colorability is proven NP-complete by a reduction from 3-SAT (a well-known NP-complete
subproblem of the satisfiability problem), which then proves the NP-completeness of graph -
colorability. Equitable 3-colorability is proven NP-complete by a reduction from graph 3-
colorability easily by adding isolated vertices to a 3-colorable graph to obtain a graph that can be
equitably 3-colored. The subproblem structure of the graph coloring class is illustrated in Figure
12.

3.2.1 Graph Coloring Problem

The graph coloring decision problem is stated as follows: Given a graph and a positive integer
 , is it possible to color the vertices of with colors so that every edge has different colored
endpoints? More formally, is there a function such that if , then
 ? Another alternative is to view the graph -coloring problem as an optimization-
type decision problem. This formulation of the problem is as follows: Given a graph ,
partition the vertices into sets so that , the number of edges with both endpoints in the same
partition class, is minimized. Then is -colorable if and only if the minimum value obtained is
 . The associated chromatic number problem asks for the minimum number of colors
needed to color so that if then . The solution to the problem is the
chromatic number of the graph , and is denoted by .

Much work has been done in exploring which classes of graphs have polynomial-time
optimal coloring algorithms. For example, the general problem can be solved in polynomial time

Graph -Colorability

Graph -Colorability

Equitable -Colorability

Figure 12: The graph coloring class

Approved for Public Release; Distribution Unlimited.

34

for any comparability graph (an undirected graph that is transitively orientable) and any chordal
graph (a graph with no induced cycle with length greater than 3) (Golumbic 1980). We also note
that when considering a graph with maximum degree at most , the decision problem becomes
trivial due to Brooks‟ Theorem, which states that for any graph that is neither a
complete graph nor an odd cycle (Diestel 2006). For the class of random graphs , there
exist linear-time algorithms for optimal coloring when , where is the edge
probability associated with the random graph (Coja-Oghlan and Taraz 2004).

3.2.1.1 Algorithms

Much work has been done on developing and improving efficient algorithms for the graph
coloring problem. While there is an abundance of algorithms focused on achieving near-optimal
colorings of a graph, there are very few exact algorithms. However, the near-optimal algorithms
can in many cases achieve colorings of a large number of graphs that use the minimum possible
number of colors. The algorithms are either based on a local search method, such as tabu search,
or on a branch-and-bound-type pruning of the entire search space. Some of the most commonly
appearing algorithms in the literature are DSATUR, Tabucol, GH, VNS and Amacol.

Instead of relying on a local search, DSATUR depends on a specific ordering of the
vertices. While many improvements have been made to the algorithm, the original method
colors the vertices according to the number of colors already present in their neighborhoods.
The DSATUR algorithm is continuously being improved upon and is still competitive with the
current algorithms (Brélaz 1979). Other similar algorithms based on specific vertex orderings,
such as RLF, often appear as a piece of a larger algorithm instead of as a standalone method like
DSATUR.

While over 20 years old, Tabucol, a local search algorithm based on tabu search, remains
very popular. Tabucol first assigns a random k-coloring to the graph, usually with a significant
number of conflicting edges (edges with endpoints of the same color). The algorithm then
improves this coloring until it has reached the maximum number of iterations allowed (Galinier
and Hertz 2006).

The Variable Neighborhood Search algorithm (VNS) is similar to Tabucol, but modifies
the searching method. While Tabucol relies on tabu search, VNS uses several neighborhoods in
order to avoid getting stuck at local optima (Avanthay, Hertz and Zufferey 2003). Variable
Space Search (VSS) is an improvement of VNS. VSS expands upon the idea of considering
many neighborhoods to also consider multiple objective functions and search spaces (Hertz,
Plumettaz and Zufferey 2008).

A very competitive algorithm is GH, a hybrid evolutionary algorithm, which relies upon
a local search method and a crossover function. The crossover function builds a new solution
from two previously created partial solutions. GH is quite competitive when it is able to

Approved for Public Release; Distribution Unlimited.

35

compute an answer under a given time constraint, however there are many instances where GH
does not come up with any solution (Galinier and Hao 1999).

Perhaps the newest algorithm that is worth considering is Amacol. Amacol relies on a
central memory solution that contains pieces of solutions and is continuously updated. Using
what is currently in the central memory solution, Amacol runs a local search method to improve
and create a better solution, and then stores pieces of this new solution (Galinier, Hertz and
Zufferey 2008).

While there is no one reference that runs experiments on all four of these algorithms side-
by-side, there has been a set of experiments run comparing Tabucol, DSATUR, GH, and Amacol
(Galinier, Hertz and Zufferey 2008), another set comparing DSATUR, Tabucol, RLF, and VNS
(Galinier and Hertz 2006), and yet another set comparing VSS and Tabucol (Hertz, Plumettaz
and Zufferey 2008).

Almost all tests run used a specific benchmark sets of graphs, such as the graphs from
The Second DIMACS Implementation Challenge: 1992-1993 (Johnson and Trick, Volume 26:
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 1996), that are
generally considered to be difficult (meaning that most algorithms struggle to find optimal
solutions). In most cases, the DIMACS graphs used contain either 500 or 1000 vertices. Other
classes of graphs were used as well, such as the flat graphs (each containing 1000 vertices). VSS
was able to obtain an optimal coloring on 16 out of 20 test graphs with a time limit of one hour.
In the tests that did not produce optimal colorings, VSS produced colorings using at most five
extra colors. Similar results are shown for Tabucol, but with fewer optimal colorings.
According to test results from July 2008, GH outperforms all of the other listed algorithms,
except for the few cases where it is unable to determine a result under the time constraint (Hertz,
Plumettaz and Zufferey 2008).

3.2.1.2 Existing Zero-Knowledge Proofs

Several zero-knowledge proof systems have been developed for the graph 3-colorng problem
(G3C). All proof systems take as public input a graph and as private input , a 3-coloring of
the vertices of . In addition to the protocols discussed here, there are a few variations that have
been published, such as a protocol that relies upon hiding the coloring through an isomorphic
graph (Grigoriev and Shpilrain 2008) and non-interactive zero-knowledge proof systems (Blum,
Feldman and Micali 1988), (Kurosawa and Takai 1992).

Figure 13 illustrates ZKP6, a zero-knowledge proof system for G3C (Goldreich, Micali
and Wigderson 1991). In the protocol, the prover permutes the coloring of the graph and
commits to it before sending it to the verifier. The verifier then selects an edge from the graph
randomly and uniformly, sends the edge choice to the prover, and then asks the prover to verify
that the edge‟s endpoints have distinct colors.

Approved for Public Release; Distribution Unlimited.

36

A similar zero-knowledge proof system is ZKP7, illustrated in Figure 14. The method of
proof is the same, however it is run in parallel instead of sequentially. The prover creates
permutations of the coloring to commit to, while the verifier commits to a set of edges to
challenge the prover with.

Common Input: The Petersen Graph () of order 10

Private Input: A 3-coloring of (as shown)

Prover Verifier

1. Chooses a permutation of .
2. Permutes the coloring of to obtain a new

coloring, .
3. Sends a commitment to to the verifier.

6. Sends the decommitment information for the
endpoints of to the verifier.

4. Chooses randomly an edge of the graph.
5. Sends to the prover.

7. Checks that the endpoints of are colored
with different colors.

1

2

3

4 5

6 8

9 10

7

Figure 13: ZKP6 for the graph 3-coloring problem example

Approved for Public Release; Distribution Unlimited.

37

3.2.1.3 Discussion of Existing Protocols

If the prover is cheating and does not have a valid 3-coloring of during ZKP6, then when the
prover attempts to 3-color , the coloring will have at least one edge with both endpoints colored
the same. The probability that the verifier will choose an edge that the prover has colored
incorrectly can be as low as . This implies that the probability that the prover will be
discovered as a cheater is as low as , and hence the probability that a cheater will not be
discovered in one round could be as high as . The number of iterations necessary
to achieve a good confidence level in this protocol can therefore be extremely high. To illustrate
how bad this probability is, on a graph with only 1,000 edges, we would need to perform 4603
iterations of the protocol in order to achieve a 99% confidence level.

Common Input: The Petersen Graph () of order 10

Private Input: An 3-coloring of (as shown)

Prover Verifier

1. Chooses permutations of .
2. Permutes the coloring of to obtain new

colorings, for all .
3. Sends a commitment to each to the verifier.

8. Sends the decommitment information for the
endpoints of each corresponding to each
to the verifier.

6. Chooses randomly a sequence of t edges,
 , of the graph.

7. Sends a commitment to to the prover.

9. Checks that the endpoints of each are
colored with different colors.

1

2

3

4 5

6 8

9 10

7

Figure 14: ZKP7 for the graph 3-coloring problem example

Approved for Public Release; Distribution Unlimited.

38

In ZKP7, the probability of catching a cheating prover increases to in
each round. When we take , this reduces to . Thus merely
by choosing large enough, it is possible to achieve any desired confidence level in just one
round (Goldreich and Kahan 1996).

Now we compute the number of bits to be transferred during the two protocols discussed.
In ZKP6, the prover does not need to send an adjacency matrix. Instead, the prover sends an -
element list in which the th position of the list contains the color of vertex . Since there are 3
possible colors, each entry requires at most 2 bits to be recognized. The total number of bits
needed to transmit the coloring will thus be at most (not including commitment). In step 5,
the verifier needs to transmit the two vertices that identify each edge selected. If there are
vertices, then to represent a vertex the verifier will need at most bits. Since two vertices
must be sent, the verifier will transmit at most bits. Thus not including what is needed
for commitment, the total number of bits sent will be:

 (12)

If the maximum amount of information that can be transmitted is 10 kilobits, then we must have:

 (13)

 (14)

Hence the largest graph that could be considered would need to have at most 4987 vertices.

It is clear that in ZKP7, the amount of information needed to be transferred increases
dramatically from ZKP6. In ZKP7, again the prover will send an -element list such that the th
position of the list contains the color of vertex . Since there are 3 possible colors, each entry
needs at most 2 bits, and so again (like in ZKP6), the total number of bits to transmit the coloring
will be at most (not including what is needed for commitments). However in this case there
are different colorings being sent, and so the total number of bits needed is at most . In step
5, the prover must transmit the two vertices that identify each edge selected, as before, however
the verifier must transmit a list of edges, requiring that the verifier transmit bits.
Not including what is needed for commitments, the total number of bits sent during ZKP2 will
be:

 (15)

If the maximum amount of information to be transmitted is 10 kilobits, then we must have:
 (16)

In any graph,

 . If we assume, as in the original publication of ZKP2

(Goldreich and Kahan 1996), that , then we must have that the above inequality
simplifies to . This tells us that the graphs that we should be considering can have at
most 10 vertices, which is not likely to be a very difficult graph coloring instance.

Approved for Public Release; Distribution Unlimited.

39

Also, if we desire a 99.99% probability of catching a cheating prover in one round, then
we must have (when):

 (17)

 (18)

Thus on problem instances with exactly 10 vertices, we can achieve the desired
confidence level in one round while remaining under the upper limit of the number of bits to be
transmitted. However, these instances will be solvable quickly and so will not be of use in
creating a secure protocol.

3.2.2 Equitable Coloring Problem

The equitable coloring problem (E3C) is formally stated as follows: Given a graph , color the
vertices of with as few colors as possible such that any two color classes differ in size by at
most 1. This problem is NP-complete, and the proof of this is fairly a straightforward reduction
from graph coloring.

Note that any equitable coloring algorithm is also a general graph coloring algorithm, and
hence the E3C must be at least as hard as the G3C in terms of algorithms finding optimal
solutions. Because of this, there are no algorithms to be presented here that were not previously
discussed in the general graph coloring section.

3.2.2.1 Application to Zero-Knowledge Proofs

Note that either of the previously discussed protocols could be applied to the E3C, as the E3C is
a subproblem of the G3C. In the zero-knowledge proof systems discussed for the G3C, ZKP6
has a low probability of catching a cheating prover, while ZKP7 has a high amount of
information to be transmitted. To address these problems, we turn to the E3C.

A zero-knowledge proof system, ZKP8, is illustrated in Figure 15. The protocol is
similar to that of the independent set problem, and takes as public input a graph and as private
input , an equitable 3-coloring of . The graph must be committed to as a permuted adjacency
matrix to hide the locations of the vertices in each color class, and the coloring must also be
committed to (in a list format). The verifier will choose to either check that the permutation was
performed correctly or to check that a specified color class induces an independent set in the
graph. If the prover has an invalid 3-coloring, then when the verifier requests a color class at
least one of the three color classes will not be independent. Thus the probability that the verifier
will catch a cheating prover will increase to .

Approved for Public Release; Distribution Unlimited.

40

It is important to note that ZKP8 is only a valid zero-knowledge proof system for the
E3C, not for the G3C. If we consider ZKP8 as applied to the G3C, the prover is showing not
only that one of the color classes is an independent set, but also the size, , of the requested color
class. The transmission of the size of one color class from the prover to the verifier prevents the
protocol from being a zero-knowledge proof system. There is no way that a verifier could have

Figure 15: ZKP8 for the equitable 3-coloring problem example

Common Input: The Petersen Graph () of order 10

Private Input: An equitable 3-coloring of (as shown)

Prover Verifier
1. Chooses a permutation of . Sets

 .
2. Chooses a permutation of
3. Creates an adjacency matrix A for
4. Sends a commitment to A and to the

verifier.

(commitment)

5. Chooses a random bit .
6. Sends to the prover.

 7. Sends and A to the verifier.
8. Checks that A was made correctly from .

9. Sends the decommitment
information for entries of
and the entries of
associated with the color class
 to the verifier.

7. Chooses .
8. Sends to the prover.

10. Checks that the vertices in the color class

form an independent set.

1

2

3

4 5

6 8

9 10

7

Approved for Public Release; Distribution Unlimited.

41

determined alone that one of the color classes has size , and so the proof of the zero-knowledge
property using simulators would fail.

We must consider now whether ZKP8 is more efficient than either ZKP6 or ZKP7. First,
we calculate the total number of bits that must be transferred. Since the graphs we are
considering in this example are simple, undirected graphs, the adjacency matrices will be
symmetric with zeros along the diagonal and with all entries either 0 or 1. Thus the prover only
needs to transmit

 entries of to the verifier. The transmission of the coloring needs bits.

Hence step 4 requires the transmission of

 committed entries, each of which is one bit.

In step 6, the verifier sends one bit. If , the prover must send the isomorphism . We can
send this in list form, and so we will need bits. If , the verifier must send an
identifier for a color class. Since there are three different color classes, this will require 2 bits.
Then the prover must also send the decommitment information for the entries corresponding to
edges within the specified color class.

Not including what is needed for commitments, the total number of bits sent will be:

 (19)

If the maximum amount of information to be transmitted is 10 kilobits, then we must have:

 (20)

 (21)

The largest graph to be considered would need to have at most 133 vertices.

The protocol is more efficient than ZKP6 in terms of the number of rounds necessary to
achieve an adequate confidence level. ZKP8 requires 38 iterations to achieve a 99% chance of
catching a cheating prover (recall that ZKP6 required 4603 iterations). We also note that if it is
possible to use as common input graphs in which it is difficult to produce even two independent
color classes, the chance that the verifier can catch a cheating prover increases from to .

Thus ZKP8 is a more efficient protocol for E3C than ZKP7, and also gives a better
probability of catching a cheating prover than ZKP6 (and ZKP7 depending on what value of is
chosen). All that remains is to prove that ZKP8 is in fact a valid zero-knowledge proof system.

Claim: ZKP8 is a zero-knowledge proof system.
Proof:

Completeness: If the prover has a yes-instance of E3C, then the verifier will accept
with probability 1.

Soundness: If the prover has a no-instance of E3C, the prover will be caught only if the
verifier chooses , and if the verifier selects a color class that is not independent.

Approved for Public Release; Distribution Unlimited.

42

Since is chosen uniformly and randomly by the verifier, the probability that the verifier
will reject is in each round. This implies that the probability that the verifier does

not reject after rounds is at most

 . When we repeat the protocol for rounds,

the probability that the verifier does not reject is

, which is asymptotically close to

(and never exceeding) .

Zero-Knowledge Property: Suppose the verifier is attempting to extract useful
information from his conversation with the prover. Then the verifier can, in the same
manner, extract the information even without the aid of the prover. In each round he does
the following:

Begin.

Verifier simulates the prover. The verifier flips a fair coin and, according to the
outcome of the coin, commits to either the graph or an arbitrary -partition of
vertices in which each partition class is an independent set. is committed to in
the same way the prover would have done so. The partition is committed to in
just the way the prover would have committed to such a partition in . Then,
acting as prover, he presents the committed information to the verifier. Now he
takes the other side.

Verifier simulates the verifier. The verifier guesses randomly and uniformly
whether to request a graph or a partition. Because the verifier has no way to
guess with any advantage whether the committed matrix contains a graph or a
partition (because the choice is random), there is a 50% chance that he requests an
option (graph or partition) that the verifier, in the guise of prover, can supply (in
all cases). If a partition was requested but a graph had been committed to, then
the verifier guess randomly and uniformly which color class to request. Then
there is a 67% chance that the verifier, in the guise of prover, can supply what was
requested correctly. This gives a total chance of 83% that the verifier, in the guise
of the prover, can supply what is requested. If what is requested cannot be
supplied, the verifier backs up the simulation to the state it was in at the start of
this round and restarts the entire round (verifier simulating the prover).

End.

In an expected 6 passes through each round, the verifier will obtain the information
without the help of the prover. Thus the interaction does not help the verifier do

Approved for Public Release; Distribution Unlimited.

43

something with the prover in expected polynomial time that he could not as well have
done without the prover in expected polynomial time.

3.2.3 Summary

The graph coloring problem and equitable coloring problem have positive and negative attributes
in terms of zero-knowledge proof systems. A positive feature of these problems is the difficulty
level. There exist difficult instances of the problems, and methods have been published on how
to create difficult instances. This would provide a strong foundation for a zero-knowledge proof
system. The negative aspects of the coloring problems are the soundness probabilities of the
proof systems. Compared to the soundness probability of

 that we see in the sub-graph

isomorphism problem and sub-problems, equitable coloring is able to achieve only a soundness
probability of

. This means increasing the number of rounds from 7 to 38 in order to achieve a

99% probability of catching a cheating prover. Given the scenarios in which we are looking to
employ zero-knowledge proof systems, it is not realistic to expect that 38 rounds of one protocol
will be possible. In order to utilize graph coloring or equitable coloring, we first need to develop
a better zero-knowledge proof system.

3.3 OTHER NP-COMPLETE PROBLEMS

3.3.1 Satisfiability

The satisfiability problem (SAT) was the first problem to be proven NP-complete (Garey and
Johnson 1979). The problem falls under the category of propositional logic, and is stated as
follows: Given a set of Boolean variables and a collection of clauses over the set of variables, is
there a truth assignment for the variables such that every clause in the collection is satisfied?

3.3.1.1 Algorithms

Much work has been done on developing algorithms to quickly and efficiently solve
instances of the SAT problem. The algorithms fall into two distinct categories: complete
algorithms and incomplete algorithms. Incomplete algorithms are stochastic local search based,
and are often faster, however fail to prove when an instance of SAT is unsatisfiable. Some well-
known incomplete algorithms are WalkSAT and GSAT. Complete algorithms are systematic
search algorithms and usually run slower, but are able to determine when an instance of SAT is
unsatisfiable. Some complete algorithms that are used often are DPLL, SATO, and GRASP.

One of the first algorithms published was the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm. The algorithm is still favored today, and many newer algorithms such as
GRASP (Marques-Silva and Sakallah 1999), SATO (Zhang 1997), and BerkMin (Goldberg and
Novikov 2002) were created with the same basic idea but with some modifications and

Approved for Public Release; Distribution Unlimited.

44

improvements. The main ideas of the systematic search algorithms are backtracking and pruning
the search space.

The incomplete algorithms available are also quite efficient in satisfiable instances.
When comparing the popular algorithms WalkSAT and GSAT, it appears that neither algorithm
is able to outperform the other consistently (Hoos and Stutzle 2000). A new variant of
WalkSAT, gNovelty+, has been developed recently for the annual SAT competition, and appears
to perform well in the random SAT area (Jia 2007).

A valuable resource for determining runtime performance of the most up-to-date SAT
solvers is the annual International SAT Competition4. Considering the results of the 2008 SAT
Competition, the solvers were given 100 instances of SAT, some of which were unsatisfiable (so
only complete algorithms competed). The solvers were allowed 900 seconds (15 minutes) to
solve each instance (or determine the instance unsatisfiable) before timing out. The instances
consisted of anywhere from 286 to 11,483,525 variables and from 1742 to 32,697,150 clauses.
The instances were taken from several benchmark suites, as well as instances from past SAT
Competitions (which includes random instances). The first place winner, MiniSat 2.1, was able
to solve 81 out of the 100 instances correctly, and the top four winners all solved more than 75
out of the 100 instances correctly.

3.3.1.2 Existing Zero-Knowledge Proofs

There seems to be less work done on the SAT problem with regard to zero-knowledge proof
systems than for some other NP-complete problems like graph 3-colorability or sub-graph
isomorphism. A zero-knowledge proof system for the SAT problem, ZKP9, which is illustrated
in Figure 16, takes as common input a set of Boolean variables and a collection of clauses
and as private input a set of true/false assignments for the variables in .

The prover (P) constructs the circuit of truth tables that corresponds to the instance of the
problem. P then randomly permutes the rows of each truth table, and randomly complements the
columns of the tables, except for the last column of the last table. P then sends a commitment to
the permuted and complemented set of tables to the verifier (V). V chooses a random bit and
sends to P. If V sends to P, then P sends the decommitment information for all of the
truth tables to V. P also notifies V as to which columns were complemented. V then checks that
the truth tables were constructed correctly. If V sends to P, then P sends to V the
decommitment information for only the rows that correspond to a satisfying truth assignment
before complementing took place. V then checks that these rows lead to a final output of true
(and hence explains why the last column of the final truth table cannot be complemented)
(Brassard, Chaum and Crepeau 1988).

4 Available at: http://www.satcompetition.org/

Approved for Public Release; Distribution Unlimited.

http://www.satcompetition.org/

45

Few other zero-knowledge proof systems have been published for the SAT problem.
Papers have been published on non-interactive zero-knowledge proof systems (Damgard 1992),
zero-knowledge proof systems with two provers (Dwork, et al. 1992), and an interactive zero-
knowledge proof system that focuses on a more secure commitment method than in the protocol
presented here (Brassard and Crepeau 1986). While these other protocols may vary slightly from
the one illustrated in this report, the extent to which the SAT problem has been studied prevents
the problem from being a secure base problem in a protocol.

Approved for Public Release; Distribution Unlimited.

46

3.3.1.3 Discussion of Existing Protocols

In discussing the amount of information transferred in the protocol, we will consider an instance
of 3-SAT, as any SAT instance can be transformed to a 3-SAT instance. In an instance of 3-
SAT, each clause has three variables. The truth table for each clause will have rows and
4 columns, giving a total of 32 entries. Since each entry is either true or false, we need only 32

Figure 16: ZKP9 for the satisfiability problem example

Common Input: A set of Boolean variables and a collection
of clauses.

Example Instance:

 U = { a, b, c }

 C = { (a ν ¬b) ʌ (¬a ν c) } Private Input: A set of assignments for such that every clause
in is satisfied.

Prover Verifier

1. Randomly permutes the rows of the truth tables.
2. Randomly complements the columns of the

truth tables except for the last column in the
final table. (Shown in green)

3. Sends a commitment to the scrambled tables to
the verifier.

4. Chooses a random bit .
5. Sends to the prover.

6. Sends the decommitment
information for all truth table
entries to the verifier and
identifies which columns were
complemented.

7. Checks that the truth tables were formed
correctly.

6. Sends the decommitment
information for the row in each
truth table that corresponds to
the satisfying truth assignment.

7. Checks that the sequence of rows revealed
outputs true.

Approved for Public Release; Distribution Unlimited.

47

bits to send the entries for each clause. If there are clauses total, then in step 3 the prover
needs bits total to send the truth tables (not including the bits needed for the commitment
process). In step 5, the verifier sends 1 bit. If , then the prover must send the identifiers
for each column in each truth table that is complemented. Since each truth table has 4 columns,
at most columns can be complemented. To send a list of numbers representing the
columns that are complemented, the prover must transfer bits. If
 , then the prover must reveal one row from each truth table by sending the appropriate
decommitment information.

When considering the maximum number of bits that will be necessary in the zero-
knowledge proof system illustrated (not including what is needed for commitment), the number
transferred will be:

 (22)

If the maximum amount of information to be transmitted is 10 kilobits, then we must have:

 (23)

 (24)

Thus the largest instance of 3SAT that could be considered would have at most 145
clauses. Considering the efficiency of the SAT competition solvers, the instances that would be
allowed under this information restriction would not create secure protocols.

3.3.2 Graph Partitioning Problem

The graph partitioning problem (GPP) is stated as follows: Given a graph and positive
integers and , is there a partition of the vertices into equal-sized classes so that there are at
most edges with endpoints in different partition classes? In general, the GPP can consider
both weighted and unweighted graphs. The GPP is an NP-complete problem in both the general
case (allowing weighted vertices and edges) and in the case restricted to unweighted graphs
(Garey and Johnson 1979).

3.3.2.1 Algorithms

There are several algorithms created to solve the GPP. One of the most well-known algorithms
was developed in the 1970‟s and is the Kernighan-Lin (KL) algorithm (Kernighan and Lin
1970). The KL algorithm begins with an initial partition, and then improves it by swapping
vertices between the partition classes. This will method will clearly find terminate with a local
minimum. However, by allowing swaps of multiple vertices at a time, the algorithm is able to
avoid getting trapped at a local minimum, and so it is able to get closer to obtaining a partition
that will achieve global minimum.

Approved for Public Release; Distribution Unlimited.

48

Another useful algorithm is JOSTLE, a multilevel paradigm algorithm. JOSTLE and
other multilevel paradigm algorithms group the graph‟s vertices to make clusters that then

become vertices in a new graph. This can be done by contracting edges. The process is repeated
until a smaller graph is obtained, and then existing exact GPP algorithms are applied to the new
graph. By expanding and refining the partition of the smaller graph, this algorithm works
backwards to create a partition for the original graph (Banos, et al. 2003).

There are many other algorithms for solving the GPP, included an isoperimetric
algorithm (Grady and Schwartz 2006), a lock-gain based algorithm (Kim and Moon 2004),
greedy algorithms, evolutionary search methods, genetic algorithms (Bui and Moon 1996),
simulated annealing algorithms (Johnson, Aragon, et al. 1989), and tabu search methods. As of
2007, JOSTLE appears to be the best performing algorithm for the GPP (Loureiro and Amaral
2007).

Chris Walshaw, of the University of Greenwich, maintains “The Graph Partitioning

Archive5
”. The archive consists of a set of benchmark problems, most of which are obtained

from real-world applications. Most of the recent publications compare algorithms based on the
instances provided there. Considering these instances and more from other sources, it appears
that there are some difficult cases of the GPP. Some of these instances as of 2005 were taking
over 4 hours to compute (Felner 2005).

3.3.2.2 Establishing a Protocol

At first glance, it appears to be a simple matter to create a zero-knowledge proof system for the
general version of the GPP (on weighted graphs). There are three things that must be proven to
the verifier: (1) the partition is valid (every vertex is in one and only one partition class), (2)
every partition class contains exactly vertices, and (3) there are edges between the partition
classes.

Considering these requirements, we arrive at Protocol A, illustrated in Figure 17.
Protocol A requires the prover to send a commitment to a permuted adjacency matrix for the
graph, and then to prove, at the request of the verifier, either that the permutation was performed
correctly or that there exists a partition of the vertices that obtains the required cut cost.

5 Available at: http://staffweb.cms.gre.ac.uk/~wc06/partition/

Approved for Public Release; Distribution Unlimited.

http://staffweb.cms.gre.ac.uk/~wc06/partition/

49

While Protocol A satisfies the completeness and the soundness properties that are
required for any interactive proof system, it does not satisfy the zero-knowledge property and
hence is not able to qualify as a zero-knowledge proof system. In steps 6 and 7, the prover opens
all entries that correspond to edges between partition classes. This then tells the verifier how
many edges there are between the partition classes, and what the different weights are (but not
which vertices the edges are between). This is information that the verifier could not possibly
have determine alone without the help of the prover.

Common Input: A graph (shown), the number of desired
partitions (), and the cost of the desired cut
().

Private Input: The partition () that achieves the
desired cut cost (as shown).

Prover Verifier

1. Creates a permutation of .
2. Creates an adjacency matrix for .
3. Sends a commitment to to the verifier.

 (commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment
information for to the verifier.

7. Checks that was formed correctly.

6. Sends the decommitment
information for the cut edges to
the verifier.

7. Sends the decommitment
information for the non-edges
between partition classes to the
verifier.

8. Checks that the total sum of edges shown
is equal to twice the desired cut cost.

9. Checks that the partition classes have
equal size and that there is the correct
number of classes.

2

2

1 1

B D

C A

There are 2 nodes in one class
There are 2 nodes in the other
class
The two classes are distinct and
disjoint

Figure 17: Protocol A for the graph partitioning problem example

Approved for Public Release; Distribution Unlimited.

50

A modification to Protocol A is shown in Protocol B. Using the same protocol but
requiring that the common input is a graph with all edge weights equal to 1, the prover is not
revealing any new information. Because the cost of the cut is common knowledge, the verifier
already knows how many edges the graph has between partition classes (provided that all edge-
weights are equal to 1). Protocol B is illustrated in Figure 18. The modification from weighted
to unweighted graph now allows the protocol to be a zero-knowledge proof system.

Common Input: An unweighted graph (shown), the number of
desired partitions (), and the cost of the
desired cut ().

Private Input: The partition () that achieves the
desired cut cost (as shown).

Prover Verifier

1. Creates a permutation of .
2. Creates an adjacency matrix for .
3. Sends a commitment to to the verifier.

(commitment)

4. Chooses a random bit .
5. Sends to the prover.

6. Sends and the decommitment

information for to the verifier.

7. Checks that was formed correctly.

6. Sends the decommitment
information for the cut edges to
the verifier.

7. Sends the decommitment
information for the non-edges
between partition classes to the
verifier.

8. Checks that the total sum of edges shown
is equal to twice the desired cut cost.

9. Checks that the partition classes have
equal size and that there is the correct
number of classes.

1

1

1 1

B D

C A

There are 2 nodes in one class

There are 2 nodes in the other
class
The two classes are distinct and
disjoint

Figure 18: Protocol B for the graph partitioning problem example

Approved for Public Release; Distribution Unlimited.

51

Claim: Protocol B is a zero-knowledge proof system for the GPP.

Proof:

Completeness: If the prover has a yes-instance of GPP, then the verifier will accept
with probability 1.

Soundness: If the prover has a no-instance of GPP, the prover will be caught only
when the verifier chooses . Since is chosen uniformly and randomly by the
verifier, the probability that the verifier will reject is in each round. This implies

that the probability that the verifier does not reject after rounds is at most

 .

Zero-Knowledge Property: Suppose the verifier is attempting to extract useful
information from his conversation with the prover. Then the verifier can, in the same
manner, extract the information even without the aid of the prover. In each round he does
the following:

Begin.

Verifier simulates the prover. The verifier flips a fair coin and, according to the
outcome of the coin, commits to either the graph or an arbitrary -partition of
vertices with the correct total cut cost. is committed to in the same way the
prover would have done so. The partition is committed to in just the way the
prover would have committed to such a partition in . Then, acting as prover, he
presents the commitment information to the verifier. Now he takes the other side.

Verifier simulates the verifier. The verifier guesses randomly and uniformly
whether to request a graph or a partition. Because the verifier has no way to
guess with any advantage whether the committed matrix contains a graph or a
partition (because the choice is random), there is a 50% chance that he requests an
option (graph or partition) that the verifier, in the guise of prover, can supply. If
not, the verifier backs up the simulation to the state it was in at the start of this
round and restarts the entire round (verifier simulating the prover).

End.

In an expected 2 passes through each round, the verifier will obtain the
information without the help of the prover. Thus the interaction does not help the verifier
do something with the prover in expected polynomial time that he could not as well have
done without the prover in expected polynomial time.

While we have now proven that Protocol B is a zero-knowledge proof system, we must

also determine the level of difficulty of the GPP given the amount of information that is revealed
in the problem. The modification to the protocol from weighted to unweighted graphs does not

Approved for Public Release; Distribution Unlimited.

52

affect the NP-completeness of the problem, as discussed previously. However, many entries of
the adjacency matrix have been revealed and could possibly make it easy for an eavesdropper to
solve the problem instance.

Consider Protocol B, as illustrated in Figure 5-3. If too many entries must be revealed by
the prover, then the isomorphism may be discovered easily by the verifier using an effective
graph isomorphism algorithm. Let be a graph with , and

for , where is the partition (as in the set of partition classes). For the verifier to check
that the prover‟s answer is valid, the verifier must see the adjacency matrix entries for all edges

and nonedges between partition classes. Thus the number of entries that will be revealed to the
verifier is:

 (25)

From this, we can see that the minimum possible number of entries that need to be
revealed is , as is the case in the example above when , but that the maximum
possible number of entries can be as high as , in the case where . It is
important to note that the number of entries revealed is entirely dependent on when the graph
 is fixed, and also that the problem does not appear to increase in difficulty when is
increased.

In determining how useful Protocol B is, we must consider the number of bits to be
transferred in each round. Since the graphs we are considering in this example are simple,
undirected graphs, the adjacency matrices will be symmetric with zeros along the diagonal and
with all entries either 0 or 1. Thus the prover only needs to transmit

 entries of to the

verifier. Hence step 3 requires the transmission of

 committed entries, each of which is one

bit. In step 5, the verifier sends one bit. If , the prover must send the isomorphism . We
can send this in list form, and so we will need bits. If , the prover must send the
decommitment information as specified in the protocol.

Adding everything up and not including what is needed for commitment, the total number
of bits sent will be:

 (26)

If the maximum amount of information to be transmitted is 10 kilobits, then we must have:

 (27)

 (28)

The largest graph to be considered could have at most 134 vertices under the given restriction.

Approved for Public Release; Distribution Unlimited.

53

3.3.3 Minimum Label Spanning Tree

The minimum label spanning tree (MLSTP) is stated as follows: Given a graph with labeled
edges, find a minimum spanning tree that uses the fewest number of labels possible. In other
words, given a graph , with vertex set , edge set , and edge label set , find an
acyclic connected sub-graph such that is minimized, where

 . In the example graph in Figure 19, , ,
and . There are many spanning trees to consider in the graph shown. It is clear that to
include vertex in the spanning tree, at least one edge with label 2 must be included. Thus a
minimum labeling spanning tree is , where , ,
and . This tree is shown in red in the figure. We should note that in the example
illustrated it is clear where the spanning tree lies in the original graph, as only one vertex has
three incident edges with the same label. In order to make the private input as safe as possible, it
is important to distribute the edge labels as consistently as possible.

The minimum label spanning tree problem is an NP-complete problem when we rephrase
it as a decision problem. In fact, it has been proven that no polynomial-time approximation
algorithm with a constant approximation ratio can exist unless P = NP. The MLSTP has many
real-world applications, such as communications networks. These kinds of networks can use
several different types of communications mediums, such as cable, telephone lines, etc. Solving
the MLSTP can give a spanning network using as few different mediums as possible (Chang and
Leu 1997).

1 1

1

2 2

2

a

b c

d
2 2

2

Figure 19: An example of the minimum label

spanning tree problem

Approved for Public Release; Distribution Unlimited.

54

3.3.3.1 Algorithms

There are several popular algorithms for solving the MLSTP. The most popular algorithm until
2005 was MVCA, the maximum vertex covering algorithm (Consoli, The Development and
Application of Metaheuristics for Problems in Graph Theory: A Computational Study 2008).
The MVCA was introduced in the paper that first described the MLSTP (Chang and Leu 1997).
This approximation algorithm produces a solution that is no greater than times the
optimal. It has also been proven that for any graph with label frequency bounded by some value
 , the worst-case bound of MVCA is

 , the th harmonic number (Xiong, Golden and

Wasil, Worst-Case Behavior of the MVCA Heuristic for the Minimum Labeling Spanning Tree
Problem 2005).

Another algorithm that appears frequently in the literature is a metaheuristic algorithm
called the Pilot Method. The Pilot Method improves upon another heuristic algorithm (such as
MVCA) using repetition and a look-ahead strategy (Voß and Duin 2003). While the Pilot
Method will perform at least as well as the heuristic algorithm that it implements (if not better), it
is often quite time consuming because of its repetitive nature.

Other algorithms for the MLSTP include genetic algorithms (Xiong, Golden and Wasil,
A One-Parameter Genetic Algorithm for the Minimum Labeling Spanning Tree Problem 2005),
tabu search algorithms, and a more recent hybrid algorithm. It appears that the best performing
algorithms are VNS (Variable Neighborhood Search) and GRASP (Greedy Randomized
Adaptive Search Procedure), which were introduced in 2009 (Consoli, Draby-Downman, et al.
2009). There is also a set of benchmark instances that are maintained by Sergio Consoli6.

3.3.3.2 Creating a Zero-Knowledge Proof System

Consider the interactive proof system that is illustrated in Figure 20. While the protocol satisfies
the completeness and soundness properties of an interactive proof system, it does not satisfy the
zero-knowledge property. In the prover‟s final step, the edges corresponding to the spanning tree

are revealed. If , then the verifier learns how many edges have the same labels. While
the verifier does not know which group of edges corresponds to which label, the prover is still
transmitting information that the verifier could not have discovered using a simulator.

The next logical question to consider is whether we can restrict the spanning tree so that
 in order to satisfy the zero-knowledge property. Since all trees have edges, the
verifier would then already know how many edges have the same label. However, the problem
then becomes too easy to base a secure protocol on. For example, consider the basic algorithm
illustrated in Figure 21. If we use any efficient algorithm for finding a spanning tree
(MinSpanTree), most of which run in polynomial time, then the problem is easily solvable in an

6 Available at: http://www.sergioconsoli.com/MLSTP.htm

Approved for Public Release; Distribution Unlimited.

http://www.sergioconsoli.com/MLSTP.htm

55

efficient manner. Thus in order to use the MLSTP, we must first develop a better zero-
knowledge proof system.

Any zero-knowledge proof system for the MLSTP needs to check the following facts:
(1) labels are used on

for

if is connected

return MinSpanTree()

exit // Exit both loops

end if

end for

Figure 21: An algorithm for the minimum label

spanning tree problem with one label

Common Input: A labeled graph (shown in Figure 6-4), and the number of distinct labels in a min. label
spanning tree (in the example).

Private Input: The min. label spanning tree, (shown in Figure 4 in red).

Prover Verifier

1. Creates a permutation of .
2. Chooses a permutation of the set of labels.
3. Creates an adjacency matrix for .
4. Sends a commitment to to the verifier.

(commitment)

5. Chooses a random bit .
6. Sends to the prover.

7. Sends and the decommitment

information for to the verifier.

8. Checks that was formed correctly.

7. Sends the decommitment
information for the entries of
corresponding to edges in .

8. Checks that the entries correspond to a
spanning tree using labels.

Figure 20: An interactive proof system for the minimum label spanning tree problem example

Approved for Public Release; Distribution Unlimited.

56

(2) is acyclic
(3) is connected
(4) is spanning

It is possible to check (3) and (4) simultaneously by having the verifier request two

vertices and requiring the prover to show a path in between those two vertices. However this
will give the verifier information on the spanning tree that could not have been obtained without
the help of the prover. The verifier can check (2) by requesting that the prover show that
 , where is the number of vertices in . Again, we arise at the problem of
determining how the prover can reveal the number of edges in without giving away any of the
structure of the tree. Lastly, the problem of proving (1) is going to be the most difficult in terms
of preserving the zero-knowledge property in the proof system. It will require a more creative
approach to construct a zero-knowledge proof system for the MLSTP than what we have
considered so far.

3.3.3.3 Coping with Weighted Graphs

So far our work on zero-knowledge proof systems has dealt with only unweighted graphs, i.e. all
edge weights are either 0 or 1, corresponding to nonedges and edges respectively. When edge
weights are introduced into an interactive proof system, usually the completeness and soundness
properties are preserved but the zero-knowledge property is not. When the prover reveals
information in the permuted and committed adjacency matrix for the graph, the prover is not
only revealing that edges exist but also the weights of the edges. This allows the verifier to
discover information about the graph that could not possibly have been computed using a
simulator. So far, it does not appear that this issue has been addressed in the literature.

When we consider the decision version of the minimum label spanning tree problem, also
known as the bounded label spanning tree problem (BLSTP), the original proof of the NP-
completeness of the problem is based on proving that if MLSTP is easily solved then the
minimum set covering problem is easily solved (Chang and Leu 1997). Unfortunately, as there
is no clear way to convert an arbitrary instance of MLSTP into another known NP-complete
problem, we are left with no obvious way of transforming an existing zero-knowledge proof
system for the class NP to this problem, as is suggested in the proofs that all languages in NP
have zero-knowledge protocols (Goldreich, Micali and Wigderson 1991).

There are several possible options for creating zero-knowledge proof systems for
weighted graph problems, however none of these options has been especially fruitful. While
some of the options have worked in specific cases, no option has worked in every case and there
still remain problems in which no option is feasible (MLSTP). The options that have been
considered already are the following:

Approved for Public Release; Distribution Unlimited.

57

1. Convert the base problem on weighted graphs to a base problem on unweighted
graphs by changing all edge weights that are greater than one to edge weight one.

In some problems, such as the minimum label spanning tree problem, this option
can make the base problem much easier. This can enable a cheater to break the
problem instance and impersonate a trusted party. However, this solution seems
feasible for the graph partitioning problem.

2. Convert the problem instances so that the solutions use the same number of edges of
each edge weight involved and include this number in the common input.

This is not always a realistic possibility. It can become quite cumbersome to
create problem instances in which the solutions are uniform, and it can also make the
problem instances much easier for cheaters to break and solve. However, this option
appears to work well for the graph coloring problem (considering vertex weights
instead of edge weights).

3. Use the reduction from an existing NP-complete problem to the base problem (as is
done in a standard proof of NP-completeness) to transform the problem into one that
is usable in an existing zero-knowledge proof system.

Proofs of NP-completeness show two facts. The first is that the base problem is
in the class NP. The second fact is that the problem is harder than an existing NP-
complete problem, i.e. an instance of the existing NP-complete problem is true if and
only if a corresponding instance of the base problem is true. This is most commonly
accomplished by transforming an instance of the existing problem into some
corresponding instance of the base problem. This leaves us with no way to
transform any instance of the base problem into an instance of the existing problem,
and hence no way to apply a zero-knowledge proof system for the existing problem
to the base problem. However, this approach works well for converting the traveling
salesman problem to a sub-graph isomorphism problem (by adding vertices along
edge with and then searching the new unweighted graph for a cycle
of length equal to the length of a minimum TSP tour in the original weighted graph).

Weighted graphs appear to greatly complicate the zero-knowledge proof systems. The
three options discussed above clearly are not perfect solutions, but they do seem to work for
some particular problems. It is worth considering whether the added complication is worth the
trouble. Either the base problem can be converted to an unweighted graph by adding vertices
and edges (which increases the number of bits sent between prover and verifier) or the prover is
required to send a commitment to an adjacency matrix that is no longer filled with only 0‟s and
1‟s (which again increases the number of bits sent). In the first case, the amount of information
that needs to be transferred increases, while the problem instances themselves may not be more
difficult than instances of a similar base problem on unweighted graphs. In the second case, it
becomes much more difficult to satisfy the zero-knowledge property.

Approved for Public Release; Distribution Unlimited.

58

4. RESULTS AND DISCUSSION

While it may be one of the best known NP-complete problems, the satisfiability problem is not a
practical base problem for a zero-knowledge proof system. First, the amount of information that
is required to be computed and transferred in the existing protocol is very large compared the
protocols that exist for the other problems discussed in this report. Second, many efficient
solvers exist for the problem. For example, the solvers tested during the SAT competition are
able to solve instances with millions of variables and millions of clauses. This fact coupled with
the data transfer in the zero-knowledge proof system discussed makes the problem very
impractical for implementation. Lastly, as of yet there does not exist a method for generating
hard instances of the satisfiability problem. Many instances that are known to be difficult were
found by a guess-and-check process, which will not be practical for use in a secure protocol. We
must be able to create hard instances of whatever base problem is selected.

Graph coloring and equitable coloring are one step closer to being practical base
problems for zero-knowledge proof systems than the satisfiability problem. While the
probability of catching a cheating prover may not be as high in the protocol for equitable 3-
coloring as in some of the protocols using other base problems, we are at least aware of methods
for creating difficult problem instances. A difficult problem instance is one in which the existing
algorithms are unable to solve optimally in a reasonable amount of time. The set of graphs
introduced by The Second DIMACS Implementation Challenge (1992-1993) seems to contain
some difficult classes of graph coloring instances. These difficult instances would enable the
graph coloring problem to be a good base problem for a zero-knowledge proof system, but a
stronger zero-knowledge proof system in which a cheater is more easily discovered must be
developed.

Out of the problem classes discussed in this report, the sub-graph isomorphism class
appears to be the most promising. In particular, the longest path problem and the sub-graph
isomorphism problem itself seem to have the most potential. Currently there do not exist any
extremely efficient solvers for the longest path problem, and all sub-graph isomorphism class
problems have a zero-knowledge proof system with a probability of catching a cheating prover,
taking only 7 rounds to achieve a confidence level of 99%. The protocols are also efficient
compared to the existing protocols for other classes of base problems in terms of the amount of
data transferred between prover and verifier. Overall, the problems in the sub-graph
isomorphism class, with the exception of graph isomorphism, seem to have the most potential.

While the sub-graph isomorphism class is emerging as a useful set of base problems for
zero-knowledge proof systems, there is still work to be done. More testing needs to be done on
the efficiency of the algorithms for the sub-graph isomorphism problem and its subproblems in
order to determine the lower bound on the size of the problem instance for a difficult problem.
We must also determine which graph structures are capable of producing the hardest instances in
the sub-graph isomorphism class. Is the average instance of the longest path problem harder than

Approved for Public Release; Distribution Unlimited.

59

the average case of the minimum bandwidth problem? Which of the problems can we develop
difficult instances for in a consistent manner?

Last, but not least, we must consider the latest problems in this area. For example, the
minimum label spanning tree, introduced in 1997, could be a promising base problem for a zero-
knowledge proof system. However, to be able to utilize this difficult problem, we must first
create a valid interactive proof system for the problem that satisfies the zero-knowledge property.
The creation of a zero-knowledge proof system involving weighted graphs will allow us to
consider many more graph theoretic problems that are currently unusable as base problems.

Approved for Public Release; Distribution Unlimited.

60

5. CONCLUSIONS AND FUTURE WORK

Zero-knowledge proof systems have many characteristics that are desirable for determining
trustworthy parties in an airborne networking environment. One approach is to base zero-
knowledge proof systems on the instances and solutions of NP-complete problem. This report
has investigated this approach with a focus on the graph theory problems within the NP-complete
and NP-hard classes.

 Future research in this area must focus application driven requirements associated with
airborne mobile adhoc networks. Protocols used for authentication of user identity, and establishment
of mutual trust, cannot constrain either the movement of information or the movement of systems
anywhere in the battlespace. Successful implementation of ZKP-based authentication protocols will
require that there be a positive impact on both network connectivity and network-user operations. The
efficiency and effectiveness of I/A protocols therefore need to be considered against realistic scenarios.
MANETs by definition are not static, their configuration change over time; network connections and
information routing paths change when nodes are added to, or removed from, the network as new user
groups form or nodes are compromised. Mitigating factors such as time-sensitivity of the I/A process,
communication channel bandwidth and quality, network dynamics and data flows, user security access
requirements, and so on, all need to be accounted for when gauging protocol viability.

Approved for Public Release; Distribution Unlimited.

61

6. REFERENCES

Alon, Noga, Raphael Yuster, and Uri Zwick. "Color-Coding." Journal of the ACM 42, no. 4
(July 1995): 844-856.

Avanthay, C., A. Hertz, and N. Zufferey. "A Variable Neighborhood Search for Graph
Coloring." European Journal of Operational Research 151 (2003): 379-388.

Banos, R., C. Gil, J. Ortega, and F.G. Montoya. "Multilevel Heuristic Algorithm for Graph
Partitioning." Lecture Notes in Computer Science 2611 (2003): 143-153.

Battiti, R., and M. Brunato. "R-Evo: A Reactive Evolutionary Algorithm for the Maximum
Clique Problem." Technical Report, Universita Degli Studi di Trento, 2007.

Björklund, A., and T. Husfeldt. "Finding a Path of Superlogarithmic Length." SIAM Journal of

Computing 32, no. 6 (2003): 1395-1402.

Blum, M. "How to Prove a Theorem So No One Else Can Claim It." Proceedings of the

International Congress of Mathematicians, 1986: 1444-1451.

Blum, M., P. Feldman, and S. Micali. "Noninteractive Zero Knowledge and Its Applications."
Proceedings of the 20th STOC, 1988: 103-112.

Brassard, G., and C. Crepeau. "Non-Transitive Transfer of Confidence: A Perfect Zero-
Knowledge Interactive Protocol for SAT and Beyond." Proceedings of the 27th Annual

Symposium on Foundations of Computer Science, 1986: 188-195.

Brassard, G., D. Chaum, and C. Crepeau. "Minimum Disclosure Proofs." Jounral of Computer

and System Sciences 37, no. 2 (October 1988): 156-189.

Brélaz, D. "New Methods to Color the Vertices of a Graph." Communications of the ACM 22,
no. 4 (April 1979): 251-256.

Bui, T.N., and B.R. Moon. "Genetic Algorithm and Graph Partitioning." IEEE Transactions on

Computers 45, no. 7 (July 1996): 841-855.

Caballero-Gil, P., and C. Hernandez-Goya. "Zero-Knowledge Hierarchical Authentication in
Manets." IEICE Transactions on Information and Systems E89-D, no. 3 (March 2006): 1288-
1289.

Chang, R.S., and S.J. Leu. "The Minimum Labeling Spanning Trees." Information Processing

Letters 63, no. 5 (1997): 277-282.

Coja-Oghlan, A., and A. Taraz. "Exact and Approximative Algorithms for Coloring G(n,p)."
Random Structures and Algorithms 24, no. 3 (2004): 259-278.

Approved for Public Release; Distribution Unlimited.

62

Consoli, S. "The Development and Application of Metaheuristics for Problems in Graph Theory:
A Computational Study." PhD Dissertation, School of Information Systems, Computing and
Mathematics, Brunel Universiy, 2008.

Consoli, S., K. Draby-Downman, N. Mladenovic, and J.A.M. Perez. "Greedy Randomized
Adaptive Search and Variable Neighbourhood Search for the Minimum Labelling Spanning Tree
Problem." European Journal of Operational Research 196 (2009): 440-449.

Conte, D., P. Foggia, C. Sansone, and M. Vento. "Thirty Years of Graph Matching in Pattern
Recognition." International Journal of Pattern Recognition and Artificial Intelligence (World
Scientific Publishing Company) 18, no. 3 (2004): 265-298.

Cook, S. "The Complexity of Theorem-Proving Procedures." Proceeds of the 3rd Annual ACM

Symposium on Theory of Computing, 1971: 151-158.

Cordella, L. P., P. Foggia, C. Sansone, and M. Vento. "A (Sub)Graph Isomorphism Algorithm
for Matching Large Graphs." IEEE Transactions on Pattern Analysis and Machine Intelligence
26, no. 10 (October 2004): 1367-1372.

Cygan, M., and M. Pilipczuk. "Faster Exact Bandwidth." Lecture Notes in Computer Science
5344 (2008): 101-109.

Damgard, I. "Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-Knowledge
with Preprocessing." Proceedings of Eurocrypt, 1992: 341-355.

De Santo, M., P. Foggia, C. Sansone, and M. Vento. "A Large Database of Graphs and Its Use
For Benchmarking Graph Isomorphism Algorithms." Pattern Recognition Letters 24 (2003):
1067-1079.

DeSantis, A., G. Di Crescenzo, G. Persiano, and M. Yung. "On Monotone Formula Closure of
SZK." Proc. of the 35th IEEE Symp. on Foundations of Computer Science, 1994.

DeSantis, A., G. Di Crescenzo, O. Goldreich, and G. Persiano. "The Graph Clustering Problem
has a Perfect Zero-Knowledge Interactive Proof." Information Processing Letters 69, no. 4
(1999): 201-206.

Desmedt, Y., and Y. Wang. "Efficient Zero-Knowledge Proofs for Some Practical Graph
Problems." Lecture Notes in Computer Science: Security in Communication Networks 2576
(2003): 290-302.

Diestel, R. Graph Theory. Springer, 2006.

Dorn, F. Planar Sub-graph Isomorphism Revisited. September 2009.
http://arxiv.org/abs/0909.4692v1 (accessed May 2010).

Approved for Public Release; Distribution Unlimited.

http://arxiv.org/abs/0909.4692v1

63

Duff, I.S. "Users' Guide for the Harwell-Boeing Sparse Matrix Collection (Release I)." Technical
Report, Research and Technology Division, Boeing Computer Services, Seattle, 1992.

Dwork, C., U. Feige, J. Killian, M. Naor, and M. Safra. "Low Communication 2-Prover Zero-
Knowledge Proofs for NP." Proceedings of the 12th Annual International Cryptology

Conference on Advances in Cryptology, 1992: 215-227.

Felner, A. "Finding Optimal Solutions to the Graph Partitioning Problem with Heuristic Search."
Annals of Mathematics and Artificial Intelligence 45, no. 3-4 (December 2005): 293-322.

Foggia, P., C. Sansone, and M. Vento. "A Performance Comparison of Five Algorithms for
Graph Isomorphism." Proceedings of the Third IAPR TC-15 Workshop on Graph Based

Representations in Pattern Recognition, 2001: 188-199.

Foggia, Pasquale. The VFLib Graph Matching Library, version 2.0. March 2001.
http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html (accessed May 24, 2010).

Fomin, F. V., D. Lokshtanov, V. Raman, B. V.R. Rao, and S. Saurabh. "Faster Algorithms for

Finding and Counting Sub-graphs". December 2009. http://arxiv.org/abs/0912.2371v1 (accessed
May 2010).

Fortin, S. "The Graph Isomorphism Problem." Technical Report, University of Alberta, 1996.

Galinier, P., A. Hertz, and N. Zufferey. "An Adaptive Memory Algorithm for the k-Coloring
Problem." Discrete Applied Mathematics 156, no. 2 (2008): 267-279.

Galinier, P., and A. Hertz. "A Survey of Local Search Methods for Graph Coloring." Computers

and Operations Research 33 (2006): 1547-2562.

Galinier, P., and J.K. Hao. "Hybrid Evolutionary Algorithms for Graph Coloring." Journal of

Combinatorial Optimization 3 (1999): 379-397.

Garey, M.R., and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. San Francisco: W.H. Freeman and Company, 1979.

Goldberg, E., and Y. Novikov. "BerkMin: A Fast and Robust SAT-Solver." Proc. of Date '02,
2002: 142-149.

Goldreich, O. "The Graph Clustering Problem has a Perfect Zero-Knowledge Proof." Theory of

Crypto Library, 1996.

Goldreich, O., and A. Kahan. "How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP." Journal of Cryptology 9 (1996): 167-189.

Approved for Public Release; Distribution Unlimited.

http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
http://arxiv.org/abs/0912.2371v1

64

Goldreich, O., S. Micali, and A. Wigderson. "Proofs that Yield Nothing But Their Validity or All
Languages in NP Have Zero-Knowledge Proof Systems." Journal of the ACM 38, no. 1 (1991):
691-729.

Golumbic, M.C. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

Grady, L., and E.L. Schwartz. "Isoperimetric Partitioning: A New Algorithm for Graph
Partitioning." SIAM Journal of Scientific Computing 27, no. 6 (2006): 1844-1866.

Grigoriev, D., and V. Shpilrain. "Zero-Knowledge Authentication Schemes from Actions on
Graphs, Groups, or Rings." CoRR, 2008.

Grosso, A., M. Locatelli, and W. Pullan. "Simple Ingredients Leading to Very Efficient
Heuristics for the Maximum Clique Problem." Journal of Heuristics 14 (2008): 587-612.

Helsgaun, K. "An Effective Implementation of the Lin-Kernighan Traveling Salesman
Heuristic." European Journal of Operational Research 126 (2000): 106-130.

Hernandez-Goya, C., and P. Caballero-Gil. "A New Role of Graph Theory: The Design of
Probably Secure Cryptoprotocols." Information Systems Security, March/April 2004: 34-43.

Hertz, A., M. Plumettaz, and N. Zufferey. "Variable Space Search for Graph Coloring." Discrete

Applied Mathematics 156, no. 13 (July 2008): 2551-2560.

Hoos, H.H., and T. Stutzle. "Local Search Algorithms for SAT: An Empirical Evaluation."
Journal of Automated Reasoning 24, no. 4 (2000): 421-481.

Jia, H. "Hard Instances with Hidden Solutions." PhD Dissertation, University of New Mexico,
2007.

Johnson, D.S., and L.A. McGeoch. "Experimental Analysis of Herustics for the STSP." Chap. 1
in The Traveling Salesman Problem and its Variations, edited by Gutin and Punnen, 369-443.
Kluwer Academic Publishers, 2002.

Johnson, D.S., and M.A. Trick, . Volume 26: DIMACS Series in Discrete Mathematics and

Theoretical Computer Science. American Mathematical Society, 1996.

Johnson, D.S., C.R. Aragon, L.A. McGeoch, and C. Schevon. "Optimization by Simultaed
Annealing: An Experimental Evaluation, Part I, Graph Partitioning." Operations Research 37
(1989): 865-892.

Karger, D., R. Motwani, and G.D.S. Ramkumar. "On Approximating the Longest Path in a
Graph." Algorithmica (Springer New York) 18, no. 1 (May 1997): 82-98.

Katayama, K., A. Hamamoto, and H. Narihisa. "An Effective Local Search for the Maximum
Clique Problem." Information Processing Letters 95, no. 5 (September 2005): 503-511.

Approved for Public Release; Distribution Unlimited.

65

Kernighan, B.W., and S. Lin. "Partitioning Graphs." The Bell System Technical Journal,
February 1970: 291-307.

Kim, Y.H., and B.R. Moon. "Lock-Gain Based Graph Partitioning." Journal of Heuristics 10
(2004): 37-57.

Knuth, Donald E. "The Stanford GraphBase: A Platform for Combinatorial Algorithms."
Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, 1993: 41-43.

Kurosawa, K., and K. Takai. "A Comment on NIZK for 3-Colorability." Singapore ICCS/ISITA,
1992: 274-278.

LeBodic, P., H. Locteau, S. Adam, P. Heroux, Y. Lecourtier, and A. Knippel. "Symbol Detection
Using Region Adjacency Graphs and Integer Linear Programming." 10th International

Conference on Document Analysis and Recognition, 2009: 1320-1324.

Lim, A., B. Rodrigues, and F. Xiao. "Heuristics for Matrix Bandwidth Reduction." European

Journal of Operational Research 174, no. 1 (2006): 69-91.

Lipets, V., N. Vanetik, and E. Gudes. "Subsea: An Efficient Heuristic Algorithm for Sub-graph
Isomorphism." Data Mining and Knowledge Discovery, May 2009.

Loureiro, R.Z., and A.R.S. Amaral. "An Efficient Approach for Large Scale Graph Partitioning."
Journal of Combinatorial Optimization 13 (2007): 289-320.

Marinakis, Y., A. Migdalas, and P.M. Pardalos. "A Hybrid Genetic - GRASP Algorithm Using
Lagrangean Relaxation for the Traveling Salesman Problem." Journal of Combinatorial

Optimization 10 (2005): 311-326.

Marques-Silva, J.P., and K.A. Sakallah. "GRASP: A Search Algorithm for Propositional
Satisfiability." IEEE Transactions on Computers 48, no. 5 (May 1999): 506-521.

McKay, B.D. "Practical Graph Isomorphism." Congressus Numerantium 30 (1981): 45-87.

Pullan, W., and H.H. Hoos. "Dynamic Local search for the Maximum Clique Problem." Journal

of Artificial Intelligence Research 25 (2006): 159-185.

Simari, G.I. "A Primer on Zero Knowledge Protocols." Technical Report, Universidad Nacional
del Sur, 2002.

Simmons, G.J., ed. Contemporary Cryptology: The Science of Information Integrity. New York:
IEEE, Inc., 1992.

Skiena, S.S. The Algorithm Design Manual. London: Springer-Verlag London Limited, 2008.

Approved for Public Release; Distribution Unlimited.

66

Solnon, Christine. "AllDifferent-Based Filtering for Sub-graph Isomorphism." Artificial

Intelligence, 2010: doi:10.1016/j.artint.2010.05.002.

Ullmann, J.R. "An Algorithm for Sub-graph Isomorphism." Journal of the ACM 23, no. 1
(January 1976): 31-42.

Vassilevska, V., R. Williams, and S.L.M. Woo. "Confronting Hardness Using a Hybrid
Approach." Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete

Algorithms. Miami: ACM, 2006. 1-10.

Voß, S., and C. Duin. "Look Ahead Features in Metaheuristics." MIC2003: The Fifth

Metaheuristics International Conference, 2003: 79-1 - 79-7.

Woeginger, G.J. "Exact Algorithms for NP-Hard Problems: A Survey." Lecture Notes in

Computer Science 2570 (2003): 185-207.

Xiong, Y., B. Golden, and E. Wasil. "A One-Parameter Genetic Algorithm for the Minimum
Labeling Spanning Tree Problem." IEEE Transactions on Evolutionary Computation 9, no. 1
(2005): 55-60.

Xiong, Y., B. Golden, and E. Wasil. "Worst-Case Behavior of the MVCA Heuristic for the
Minimum Labeling Spanning Tree Problem." Operations Research Letters 33, no. 1 (2005): 77-
80.

Zampelli, S., Y. Deville, and C. Solnon. "Solving Sub-graph Isomorphism Problems with
Constraint Programming." Constraints, 2010 (to appear).

Zhang, H. "SATO: An Efficient Propositional Prover." Proc. of the 14th International

Conference on Automated Deduction, 1997: 272-275.

Approved for Public Release; Distribution Unlimited.

67

7. LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

 and
 or
 is isomorphic to
 the integers 1 through
¬ for Boolean variable , the complement of
 for sets and ,

 the set of edges of graph
 a graph with vertex set and edge set
 the complement of graph
 the number of vertices in graph
 the number of edges in graph
 the Erdős-Rényi model random graph on vertices with edge probability
 the sub-graph of induced by the set
 a path with edges

 a path with additional edges added between every pair of vertices such
that the distance between and in the path is at most

 the set of vertices of graph

 the maximum degree of the graph
 for permutations and , equivalent to
 the chromatic number of the graph

Abbreviations

3-SAT satisfiability problem consisting of clauses with three variables
AN airborne network
APX the class of optimization problems with polynomial-time approximation

algorithms with approximation ratio bounded by a constant
BLSTP bounded label spanning tree problem
DIMACS center for Discrete Mathematics and Theoretical Computer Science
DLS dynamic local search
E3C equitable 3-coloring problem
G3C graph 3-coloring problem
GA genetic algorithm
GCP graph clustering problem

Approved for Public Release; Distribution Unlimited.

68

GIP graph isomorphism problem
GNI graph non-isomorphism problem
GPP graph partitioning problem
GRASP greedy randomized adaptive search procedure
HCP Hamiltonian cycle problem
ISP independent set problem
KIS the -independent set problem
LPP longest path problem
MANET mobile ad hoc network
MBP minimum bandwidth problem
MCP maximum clique problem
MLSTP minimum label spanning tree problem
MVCA maximum vertex covering algorithm of Chang and Leu (1997)
NP the class of nondeterministic polynomial problems
P the class of deterministic polynomial problems
QRA quadratic residuosity assumption
RLS reactive local search
SA simulated annealing
SAT satisfiability problem
SGI sub-graph isomorphism problem
TSP traveling salesman problem
VNS variable neighborhood search
VSS variable space search
ZKP zero-knowledge proof system

Approved for Public Release; Distribution Unlimited.

69

APPENDIX: ANNOTATED BIBLIOGRAPHY

NP-COMPLETE GRAPH PROBLEMS

Generally considered the standard reference on NP-complete problems:

1. M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company: San Francisco, 1979.

GENERAL PAPERS ON ZKP BACKGROUND

2. J. Feigenbaum. “Overview of Interactive Proof Systems and Zero-Knowledge.”

Contemporary Cryptology: The Science of Information Integrity. (Ed. G. J.
Simmons) IEEE Press: 423-439, New York, 1992.

3. O. Goldreich, Y. Oren. “Definitions and Properties of Zero-Knowledge Proof
Systems.” Journal of Cryptology: 1-32, 1994.

4. O. Goldreich. Foundations of Cryptography: Fragments of a Book. Weizmann

Institute of Science: 1995.

5. G.J. Simmons, ed. Contemporary Cryptology: The Science of Information Integrity.
New York: IEEE, Inc., 1992.

GRAPH ISOMORPHISM

6. G. Brassard, C. Crepeau. “Non-Transitive Transfer of Confidence: A Perfect Zero-

Knowledge Interactive Protocol for SAT and Beyond.” Proc. of the 27
th

 Annual

Symp. on Foundations of Computer Science: 188-195, 1986.

Notes: Introduces an idea for a ZKP for graph isomorphism based on the assumption
that arbitrarily hard instances of the problem exist. States that the protocol will be
formalized in a later paper.

7. D. Conte, P. Foggia, C. Sansone, and M. Vento. “Thirty Years of Graph Matching in

Pattern Recognition. International Journal of Pattern Recognition and Artificial

Intelligence (World Scientific Publishing Company) 18, no. 3(2004): 265-298.

Approved for Public Release; Distribution Unlimited.

70

Notes: Discusses many of the graph and sub-graph isomorphism algorithms that
existed at the time of publication. Also shows many applications of the problems and
algorithms.

8. L. P. Cordella, P. Foggia, C. Sansone, M. Vento. “A (Sub)Graph Isomorphism

Algorithm for Matching Large Graphs.” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(10): 1367-1372. Oct. 2004.

Notes: Introduces and describes the VF2 algorithm. Compares VF2 with Nauty and
Ullman‟s algorithm on the graph isomorphism problem with input graphs that are
randomly connected, 2D mesh, or bounded valence graphs.

9. P. Foggia, C. Sansone, M. Vento. “A Performance Comparison of Five Algorithms

for Graph Isomorphism.” Proc. of the 3
rd

 IAPR TC-15 Workshop on Graph Based

Representations in Pattern Recognition: 188-199, 2001.

Notes: Compares VF2, Nauty, and Ullman‟s algorithm on benchmark sets of graphs
(tested on randomly connected, 2D mesh, and bounded valence graphs). Contains
many graphs and plots of the results.

10. P. Foggia. The VFLib Graph Matching Library, version 2.0. March 2001. Available
at http://amalfi.dis.unina.it/graph/db/vlib.html (accessed May 24, 2010).

Notes: The home of the VF2 algorithm. The C++ code is publicly available at this
site.

11. S. Fortin. “The Graph Isomorphism Problem.” Technical Report TR 96-20:

University of Alberta, July 1996.

Notes: A description of the graph isomorphism problem with a description of some
invariants under isomorphism that can be used to reduce the search space. Also
discusses Nauty and tests the program with a few specific types of graphs.

12. O. Goldreich. Foundations of Cryptography: Fragments of a Book. Weizmann
Institute of Science: 1995.

Notes: Presents a perfect zero-knowledge proof for the graph isomorphism problem.
Goes through a formal and thorough proof that the protocol presented is a zero-
knowledge proof system using simulators.

Approved for Public Release; Distribution Unlimited.

http://amalfi.dis.unina.it/graph/db/vlib.html

71

13. O. Goldreich, S. Micali, A. Wigderson. “Proofs that Yield Nothing but Their

Validity or All Languages in NP Have Zero-Knowledge Proof Systems.” Journal of

the ACM 38(1): 691-729, 1991.

Notes: Presents a perfect zero-knowledge proof system for the graph isomorphism
problem. Contains a thorough discussion and proof that the protocol is a perfect zero-
knowledge proof system. Discusses a modification to the protocol to enable parallel
execution instead of sequential.

14. D. Grigoriev, V. Shpilrain. “Zero-Knowledge Authentication Schemes from Actions
on Graphs, Groups, or Rings.” CoRR: 2008.

Notes: Discusses the problem as a promise problem, i.e. find a particular
isomorphism between the two graphs (not just any isomorphism). Outlines the
protocol and proves that successful forgery in the protocol is equivalent to solving the
instance of the graph isomorphism problem.

15. C. Hernandez-Goya, P. Caballero-Gil. “A New Role of Graph Theory: The Design

of Probably Secure Cryptoprotocols.” Information Systems Security: 34-43,
March/April 2004.

Notes: Mentions methods for creating difficult instances of the graph isomorphism
problem. Discusses several (non-zero-knowledge) protocols for the graph
isomorphism problem, and then improves upon the ideas to create a general zero-
knowledge proof system for any graph problem.

16. B.D. McKay. “Practical Graph Isomorphism.” Congressus Numerantium 30 (1981):

45-87.

Notes: Introduces and describes the mathematical methods behind the Nauty
algorithm.

17. R. Mun (Advisor: R. Williams). “15-453 FLAC: Graph Isomorphism.”

Notes: Presents some background and explanation of the graph isomorphism
problem. Discusses some possible approaches to finding an efficient algorithm for
the problem and mentions both the positive and negative sides to each approach.

Approved for Public Release; Distribution Unlimited.

72

18. J. Pieprzyk, T. Hardjono, J. Seberry. “Zero Knowledge Proof Systems.” From

Fundamentals of Computer Security. Springer-Verlag: 409-431, 2003.

Notes: Defines and introduces zero-knowledge proof systems. Presents an
interactive proof system for the graph isomorphism problem and proves that it is a
zero-knowledge proof system in a thorough manner.

19. J. Rothe. Complexity Theory and Cryptology. Springer-Verlag: 386-393, 2005.

Notes: Discusses and outlines a zero-knowledge proof system for the graph
isomorphism problem, along with a discussion of the protocol. Discusses various
possible commitment schemes to use in the protocol.

20. G. I. Simari. “A Primer on Zero Knowledge Protocols.” Universidad Nacional del

Sur: June 27, 2002.

Notes: Introduces and defines the properties of zero-knowledge proof systems.
Outlines a zero knowledge protocol for the problem through a specific example.
Discusses why the protocol is zero-knowledge and demonstrates a forgery algorithm.

GRAPH NON-ISOMORPHISM

21. O. Goldreich. Foundations of Cryptography: Fragments of a Book. Weizmann

Institute of Science: 1995.

Notes: Discusses an interactive proof system for GNI, and then goes on discuss how
to modify the protocol to achieve a zero-knowledge proof system in a later section.

22. O. Goldreich, S. Micali, A. Wigderson. “Proofs that Yield Nothing but Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems.” Journal of

the ACM 38(1): 691-729, 1991.

Notes: Presents an interactive proof system for graph non-isomorphism and then
extends this proof system to a perfect zero-knowledge proof system for the problem.
Mentions that the protocol discussed can also be run in parallel instead of
sequentially.

Approved for Public Release; Distribution Unlimited.

73

23. J. Pieprzyk, T. Hardjono, J. Seberry. “Zero Knowledge Proof Systems.” From

Fundamentals of Computer Security. Springer-Verlag: 409-431, 2003.

Notes: Presents an interactive proof system for the graph non-isomorphism problem.
States that the protocol is zero-knowledge (with reference to a proof). Discusses the
relationship between this protocol and the one for the graph isomorphism problem.

SUB-GRAPH ISOMORPHISM

24. N. Alon, Raphael Yuster, and Uri Zwick. "Color-Coding." Journal of the ACM 42,

no. 4 (July 1995): 844-856.

Notes: Introduces the color-coding method of solving the sub-graph isomorphism
problem. This algorithm solves certain subcases of the SGI in polynomial time using
the concept of treewidth and tree decompositions.

25. L. P. Cordella, P. Foggia, C. Sansone, M. Vento. “A (Sub)Graph Isomorphism

Algorithm for Matching Large Graphs.” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 26(10): 1367-1372. Oct. 2004.

Notes: Introduces and describes the VF2 algorithm. Compares VF2 to Ullman‟s

algorithm, and concludes that VF2 performs better, especially when sub-graph has
more than 20 nodes. Tests the algorithm on graphs derived from large line drawings
of publicly available images.

26. F. Dorn. “Planar Sub-graph Isomorphism Revisited.” September 2009. Available on

the arXiv: http://arxiv.org/abs/0909.4692v1 (accessed May 2010).

Notes: Theoretical results on planar sub-graph isomorphism.

27. P. Foggia. The VFLib Graph Matching Library, version 2.0. March 2001. Available
at http://amalfi.dis.unina.it/graph/db/vlib.html (accessed May 24, 2010).

Notes: The home of the VF2 algorithm. The C++ code is publicly available at this
site.

Approved for Public Release; Distribution Unlimited.

http://arxiv.org/abs/0909.4692v1
http://amalfi.dis.unina.it/graph/db/vlib.html

74

28. F.V. Fomin, D. Lokshtanov, V. Raman, B.V.R. Rao, and S. Saurabh. “Faster

Algorithms for Finding and Counting Sub-graphs.” December 2009. Available on

the arXiv: http://arxiv/org/abs/0912.2371v1 (accessed May 2010).

Notes: Theoretical results on the sub-graph isomorphism problem using the notion of
treewidth and randomized algorithms.

29. D. Grigoriev, V. Shpilrain. “Zero-Knowledge Authentication Schemes from Actions

on Graphs, Groups, or Rings.” CoRR: 2008.

Notes: Describes the usual sub-graph isomorphism protocol, but commits to the
graph by embedding it in a larger graph. Contains a few short notes about the
protocol.

30. P. LeBodic, H. Locteau, S. Adam, P. Heroux, Y. Lecourtier, and A. Knippel.
“Symbol Detection Using Region Adjacency Graphs and Integer Linear

Programming.” 10
th

 International Conference on Documnt Analysis and Recognition,
2009: 1320-1324.

Notes: Formulates the sub-graph isomorphism problem as an integer linear program.
Contains experimental results that are specific to architectural applications.

31. V. Lipets, N. Vanetik, E. Gudes. “Subsea: an efficient heuristic algorithm for sub-

graph isomorphism.” Data Mining and Knowledge Discovery: 2009.

Notes: Introduces a new algorithm that finds all sub-graphs in the second graph that
are isomorphic to the first (instead of just one like VF2 or Ullman‟s). Performs well
when all sub-graphs are desired, but when just one is needed, it is often outperformed.

32. H. Shang, Y. Zhang, X. Lin, J. X. Yu. “Taming Verification Hardness: An Efficient

Algorithm for Testing Sub-graph Isomorphism.” Proc. of the VLDB Endowment,
1(1): 364-374, Aug. 2008.

Notes: Introduces and describes the QuickSI algorithm for testing sub-graph
isomorphism. Compares and evaluates QuickSI against the Ullman algorithm. Both
algorithms use branch and bound, but QuickSI encodes an ordering while Ullman is a
random ordering.

Approved for Public Release; Distribution Unlimited.

http://arxiv/org/abs/0912.2371v1

75

33. C. Solnon. “AllDifferent-Based Filtering for Sub-graph Isomorphism.” Artificial

Intelligence, 2010: doe: 10.1016/j.artint.2010.05.002.

Notes: Introduces a new filtering algorithm for the sub-graph isomorphism and
shows experimental results comparing the new algorithm with VF2 and other existing
algorithms.

34. A. Takura. “Automated Generation of Communications Software from Service

Specifications Described by State Transition Rules.” Proc. of the Thirtieth Hawaii

International Conference: 472-480, Jan. 1994

Notes: Develops a procedure for automated generation of software for telephone
service based on the sub-graph isomorphism problem. The graphs that are developed
for this purpose can find sub-graph isomorphisms at a “practical speed”.

35. J.R. Ullman. “An Algorithm for Sub-graph Isomorphism.” J. Assoc. for Computing

Machinery, 23: 31-42, 1976.

Notes: Introduces Ullman‟s algorithm for the graph isomorphism and sub-graph
isomorphism problem. Tests the algorithm on several different types of graphs.

36. S. Zampelli, Y. Deville, and C. Solnon. “Solving Sub-graph Isomorphism Problems

with Constraint Programming.” Constraints, 2010 (to appear).

Notes: Introduces a new filtering algorithm and tests the new algorithm against other
algorithms such as VF2.

HAMILTONICITY

37. M. Blum. “How to Prove a Theorem So No One Else Can Claim It.” Proceedings of

the International Congress of Mathematicians: 1444-1451, 1986.

Notes: Outlines and discusses a zero-knowledge proof system for the Hamiltonian
cycle problem. Presents the protocol using locked boxes instead of
encryption/commitments. Proves that the properties of a zero-knowledge proof
system are satisfied in the given protocol.

Approved for Public Release; Distribution Unlimited.

76

38. P. Caballero-Gil, C. Hernandez-Goya. “Zero-Knowledge Hierarchical Authentication
in MANETs.” IECE Trans. Inf. And Syst., Vol. E89-D, No. 3: 1288-1289, March
2006.

Notes: Uses a zero-knowledge proof system for the Hamiltonian cycle problem to
implement a hierarchical scheme. Notes that zero-knowledge proof system involved
need not be based on the Hamiltonian cycle problem and that any other hard graph
problem would suffice.

39. B. Chazelle. “The security of knowing nothing.” Nature, vol. 446: 992-993, April
2007.

Notes: Begins with a basic introduction to zero-knowledge proof systems and
discusses a real-world application of the Hamiltonian cycle problem. Discusses how
to hide the private information instead of revealing all.

40. I. Damgård. “Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-
Knowledge with Preprocessing.” Proc. of Eurocrypt: 341-355, 1992.

Notes: Presents an interactive argument with preprocessing from a paper in the
references. The author goes on to critique this model and present a more efficient
preprocessing and proof phase based on an assumption that collision free hash
functions exist.

41. D. Grigoriev, V. Shpilrain. “Zero-Knowledge Authentication Schemes from Actions

on Graphs, Groups, or Rings.” CoRR: 2008.

Notes: Observes that this problem is a special case of the sub-graph isomorphism
problem, which is then discussed (see sub-graph isomorphism).

42. G. Gutin, D. Karapetyan. “16: Greedy Like Algorithms for the Traveling Salesman

and Multidimensional Assignment Problems.” Advances in Greedy Algorithms. W.
Bednorz (Ed.), I-Tech, Vienna, Austria: 291-304, Nov. 2008.

Notes: Introduces the asymmetric TSP and the symmetric TSP problems along with
greedy algorithms for both. Introduces the greedy algorithm, NN algorithm, and
Patch algorithm, and tests them on some instances from TSPLIB.

Approved for Public Release; Distribution Unlimited.

77

43. R. Hassin, A. Keinan. “Greedy Heuristics with Regret, with Application to the
Cheapest Insertion Algorithm for the TSP.” Operations Research Letters, 36: 243-
246, 2008.

Notes: Introduces a greedy algorithm with partial regret (reconsider past decisions).
Compares the standard algorithm with this algorithm allowing regret, and tests the
algorithm on the TSPLIB instances, showing a reduction in average error.

44. K. Helsgaun. “An Effective Implementation of the Lin-Kernighan Traveling
Salesman Hueristic.” European Journal of Operational Research, 126 (2000): 106-
130.

Notes: Introduces an implementation of the symmetric TSP and finds optimal
solutions of real-world instances.

45. D.S. Johnson, L.A. McGeoch. “Chapter 1: Experimental Analysis of Heuristics for

the STSP.” The Traveling Salesman Problem and its Variations. Gutin, Punnen
(Eds.), Kluwer Academic Publishers: 369-443, 2002.

Notes: Discusses and compares the relevant algorithms (from 2002). Testing is done
on several random instances as well as instances from TSPLIB. Only instances with
more than 1000 nodes were considered, as ones with fewer than 1000 nodes are
generally considered too easy.

46. D. Kaur, M.M. Murugappan. “Performance Enhancement in Solving Traveling

Salesman Problem using Hybrid Genetic Algorithm.” Proc. of the IEEE NAFIPS

Conference: May, 2008.

Notes: Introduces a hybrid genetic algorithm for TSP and compares it to NN (nearest
neighbor) and pure GA (genetic algorithm).

47. D. Lapidot, A. Shamir. “A one-round, two-prover, zero-knowledge protocol for NP.”

Combinatorica, 15(2): 203-214, June, 1995.

Notes: Quickly describes a basic zero-knowledge proof system for the Hamiltonian
cycle problem with one prover. Extends this basic protocol to a zero-knowledge
proof system for the Hamiltonian cycle problem with two provers and one verifier.
Thoroughly proves that the properties of a zero-knowledge proof system are satisfied.

Approved for Public Release; Distribution Unlimited.

78

48. D. Lin, X. Wu, D. Wang. “Exact Heuristic Algorithm for Traveling Salesman

Problem.” Proc. of 9
th

 International Conference for Young Computer Scientists: 9-
13, Nov. 2008.

Notes: Introduces a new heuristic algorithm (BACHA) based on branch-and-cut for
the TSP. Tests BACHA against the normal GA on some benchmark instances from
TSPLIB95. Also compares it with a version of the Lin-Kernighan algorithm.

49. Y. Marinakis, A. Migdalas, P.M. Pardalos. “A Hybrid Genetic – GRASP Algorithm
Using Lagrangean Relaxation for the Traveling Salesman Problem.” Journal of

Combinatorial Optimization, 10: 311-326, 2005.

Notes: Discusses the different types of algorithms available for TSP as of 2005.
Contains a list ranking all of the best known algorithms by average quality.
Introduces a new algorithm that is tested on instances from TSPLIB and compares it
with existing algorithms.

50. M. Nguyen, S. Vadhan. “Zero Knowledge with Efficient Provers.” Proc. of the 38
th

Annual Symposium on Theory of Computing: 287-295, 2006.

Notes: Discusses the idea of 1-out-of-2 binding commitments mostly for the “entropy

approximation” problem, but with references to graph isomorphism, 3-colorability,
and hamiltonicity. Outlines the usual Hamiltonian cycle zero-knowledge proof
system.

51. J.W. Pepper, B.L. Golden, E.A. Wasil. “Solving the Traveling Salesman Problem

with Annealing-Based Heuristics: A Computational Study.” IEEE Transactions on

Systems, Man, and Cybernetics – Part A: Systems and Humans, 32(1): 72-77, Jan.
2002.

Notes: Compares several annealing-based heuristics for TSP by testing on instances
from TSPLIB. Algorithms compared: SA (simulated annealing), TA (threshold
accepting), RRT (record-to-record travel), and DA (demon algorithm).

52. G. Reinelt. “TSPLIB – A Traveling Salesman Problem Library.” ORSA Journal on

Computing, 3(4): 376-384, 1991.

Notes: Discusses the contents of the set of benchmark instances for the traveling
salesman problem: TSPLIB.

Approved for Public Release; Distribution Unlimited.

79

53. S.S. Skiena. The Algorithm Design Manual. Springer-Verlag: London, 2008.

Notes: Introduces both the Hamiltonian cycle problem and the traveling salesman
problem with general background information as well as a short discussion on
efficient algorithms.

54. F. Zhao, J. Dong, S. Li, J. Sun. “An Improved Ant Colony Optimization Algorithm

with Embedded Genetic Algorithm for the Traveling Salesman Problem.” Proc. of

the 7
th

 World Congress on Intelligent Control and Automation: 7902-7906, June
2008.

Notes: Introduces a new ACO (ant colony optimization) algorithm and tests it against
existing ACO algorithms. Testing is done on benchmark instances from TSPLIB.

LONGEST PATH PROBLEM

55. A. Björklund, T. Husfeldt. “Finding a Path of Superlogarithmic Length.” SIAM

Journal of Computing, 32(6): 1395-1402, 2003.

Notes: Introduces a polynomial-time algorithm to find a long (defined in paper) path
in a graph. Does not contain experimental results for the algorithm, but contains a
more theoretical analysis of the problem and algorithm.

56. D. Karger, R. Motwani, and G.D.S. Ramkumar. “On Approximating the Longest

Path in a Graph.” Algorithmica (Springer New York) 18, no. 1 (May 1997): 82-98.

Notes: Considers several different (inexact) longest path algorithms and compares
their performance. Also includes hardness results of the problem.

57. S.N.N. Pandit. “Some Observations on the Longest Path Problem.” Operations

Research, 12(2): 361-364, 1964.

Notes: Critiques a paper that discusses the traveling salesman problem by Hardgrave
and Nemhauser where the problem is transformed into the longest path problem.
Concludes that this transformation is unhelpful, as the longest path problem is also a
difficult problem.

Approved for Public Release; Distribution Unlimited.

80

58. V. Vassilevska, R. Williams, S.L.M. Woo. “Confronting Hardness Using a Hybrid
Approach.” Technical Report, Computer Science Department, Carnegie Mellon

University: April 2005.

Notes: Introduces an algorithm that will either find the exact solution in sub-
exponential time or approximate the solution in polynomial time. Compares this to
the runtimes of other algorithms for the longest path problem.

59. S. Voß and C. Duin. “Look Ahead Features in Metaheuristics.” MIC2003: The Fifth

Metaheuristics International Conference, 2003: 79-1 – 79-7.

Notes: Introduces the Pilot algorithm and shows applications to TSP.

MINIMUM BANDWIDTH PROBLEM

60. M. Cygan, M. Pilipczuk. “Faster Exact Bandwidth.” Lecture Notes in Computer

Science, 5344: 101-109, 2008.

Notes: Discusses exact algorithms for the minimum bandwidth problem. Introduces
a new algorithm that has time-complexity . Also includes some background
information on the problem itself.

61. I.S. Duff. “Users‟ Guide for the Harwell-Boeing Sparse Matrix Collection (Release

I).” Technical Report TR/PA/92/86, Research and Technology Division, Boeing
Computer Services, Seattle, WA: Oct. 1992.

Notes: Describes the Harwell-Boeing Sparse Matrix Collection that is available
online. Gives the background for each class of instances along with some detail on
what type of instance the class contains.

62. A. Lim, B. Rodrigues, F. Xiao. “Heuristics for Matrix Bandwidth Reduction.”

European Journal of Operational Research, 174(1): 69-91, 2006.

Notes: Introduces new heuristic algorithms for the minimum bandwidth problem and
tests them against the GPS algorithm, GRASP, tabu search, etc., using the Harwell-
Boeing Sparse Matrix Collection.

Approved for Public Release; Distribution Unlimited.

81

63. V. Vassilevska, R. Williams, S.L.M. Woo. “Confronting Hardness Using a Hybrid

Approach.” Technical Report, Computer Science Department, Carnegie Mellon
University: April 2005.

Notes: Introduces a hybrid algorithm for the minimum bandwidth problem. Offers
an algorithm that either solves the problem exactly or approximates it in polynomial
time. Discusses the approximation ratio achieved if an exact solution cannot be
found.

64. G.J. Woeginger. “Exact Algorithms for NP-Hard Problems: A Survey.” Lecture

Notes in Computer Science, 2570: 185-207, 2003.

Notes: Outlines and discusses the algorithm of Feige and Kilian with time-
complexity that is based on the technique of pruning the search tree.
Concludes that it is still an open problem as to whether the problem has an exact
algorithm with time-complexity .

GRAPH CLUSTERING

65. A. De Santis, G. Di Crescenzo, O. Goldreich, G. Persiano. “The Graph Clustering

Problem has a Perfect Zero-Knowledge Interactive Proof.” Information Processing

Letters 69(4): 201-206, 1999.

Notes: Develops a perfect zero-knowledge interactive proof system for the problem
based on four subprotocols: the first two show that the input graphs fall into exactly c
clusters, the last two show that the cluster sizes are exactly the positive integers
specified.

66. O. Goldreich. “The Graph Clustering Problem has a Perfect Zero-Knowledge Proof.”

Theory of Crypto Library: 1996.

Notes: Presents a proof (no protocol) based on the threshold formula that a perfect
zero-knowledge proof exists for the problem. The proof is valid for inputs with at
most 5 graphs.

Approved for Public Release; Distribution Unlimited.

82

GRAPH K-COLORABILITY

67. H. Al-Omari, K.E. Sabri. “New Graph Coloring Algorithms.” American Journal of

Mathematics and Statistics, 2(4): 439-441, 2006.

Notes: Proposes and discusses two new heuristic graph coloring algorithms.
Compares them against basic existing algorithms such as first fit and concludes that
the new heuristic algorithms perform better.

68. C. Avanthay, A. Hertz, N. Zufferey. “A Variable Neighborhood Search for Graph

Coloring.” European Journal of Operational Research, 151: 379-388, 2003.

Notes: Introduces and discusses the variable neighborhood search (VNS) algorithm
for the graph coloring problem. Compares VNS with Tabucol and GH (genetic
hybrid) using the DIMACS benchmark graphs.

69. I. Blochliger, N. Zufferey. “A Graph Coloring Heuristic Using Partial Solutions and

a Reactive Tabu Scheme.” Computers and Operations Research, 35: 960-975, 2008.

Notes: Introduces and discusses four new algorithms based on PartialCol. Tested
against and compared to GH and MMT algorithms on some well-known benchmark
graphs. Compares the best colorings found by each algorithm.

70. M. Blum. “How to Prove a Theorem So No One Else Can Claim It.” Proceedings of

the International Congress of Mathematicians: 1444-1451, 1986.

Notes: Outlines a zero-knowledge proof system for the graph 3-colorability problem
using locked boxes. Discusses briefly Goldreich, Micali, and Wigderson‟s (1991)
zero-knowledge proof system for 3-colorability.

71. M. Blum, P. Feldman, S. Micali. “Noninteractive Zero Knowledge and its

Applications.” Proc. of 20
th

 STOC: 103-112, 1988.

Notes: Outlines a noninteractive zero-knowledge proof of 3-colorability based on the
quadratic residue assumption (number theory). Discusses the limitations of the
single-theorem protocol, and improves the protocol to a more general noninteractive
zero-knowledge proof for 4-colorability.

Approved for Public Release; Distribution Unlimited.

83

72. D. Brelaz. “New Methods to Color the Vertices of a Graph.” Communications of the

ACM, 22(4): 251-256, April 1979.

Notes: Introduces and discusses the DSATUR algorithm. Contains a comparison and
testing of three versions of DSATUR against the algorithms that were current at the
time.

73. A. Coja-Oghlan, A. Taraz. “Exact and Approximative Algorithms for Coloring G(n,

p).” Random Structures and Algorithms, 24(3): 259-278, 2004.

Notes: Discusses optimal and approximative coloring algorithms for random graphs
G(n, p). Presents polynomial-time optimal algorithms for specific ranges of values
for p.

74. I. Devarenne, A. Caminada, H. Mabed. “Analysis of Adaptive Local Search for

Graph Coloring Problem.” The 6
th

 Metaheuristics International Conference: 1204-1
– 1204-6, 2005.

Notes: Introduces and discusses a new local search method M/L/D/C. Compares
M/L/D/C with the mutation and selection algorithm and the tabu search algorithm
(both by Dorne and Hao). Analysis and comparison done on CNET instances of the
graph coloring problem.

75. I. Devarenne, H. Mabed, A. Caminada. “Optimization by Extension-Restriction
Neighborhood in Local Search: Application to Graph Coloring Problem.” Proc. of

20
th

 European Simulation and Modeling Conference: Oct. 2006.

Notes: Presents a new local search algorithm and compares it with other algorithms
that implement either partial neighborhood exploration (local search) or total
neighborhood exploration (Tabu search). Evaluates the new algorithm on the
DIMACS graphs and compares it with DSATUR, AMACOL, and several tabu
methods.

76. I.M. Diaz, P. Zabala. “A Branch-and-Cut Algorithm for Graph Coloring.” Proc. of

the Computational Symp. on Graph Coloring and its Generalization: 2002.

Notes: Introduces and discusses a branch-and-cut algorithm based on integer linear
programming. Compares the new algorithm with DSATUR. Concludes that the new
algorithm was able to solve more instances of the graph coloring problem than
DSATUR given a 2-hour time limit.

Approved for Public Release; Distribution Unlimited.

84

77. R. Dorne, J.K. Hao. “A New Genetic Local Search Algorithm for Graph Coloring.”

Lecture Notes in Computer Science, 1498: 745-754, 1998.

Notes: Presents a new genetic local search algorithm based on independent sets and
Tabu search. Tests and compares the new algorithm on DIMACS benchmarks
against XRLF, EDM, and Fleurent and Ferland‟s algorithm. While the algorithm is

slower, it is able to find better colorings the other algorithms in the graphs that are
analyzed.

78. R. Dorne, J.K. Hao. “3: Tabu Search for Graph Coloring, T-Coloring and Set T-
Colorings.” Metaheuristics ‟98: Theory and Applications. Kluwer Academic
Publishers: 33-48, 1998.

Notes: Introduces the algorithm GTS (Generic Tabu Search). Compares the
algorithm against Fleurent and Ferland, EDM, and XRLF. Shows mixed results on
the performance of the algorithm.

79. P. Galinier, J.K. Hao. “Hybrid Evolutionary Algorithms for Graph Coloring.”

Journal of Combinatorial Optimization, 3: 379-397, 1999.

Notes: Introduces and discusses the hybrid evolutionary algorithms (HEAs) „HCA‟

for the graph coloring problem. Tests and compares HCA to the Tabu search
algorithm, against which HCA is shown to outperform in both power and speed.

80. P. Galinier, A. Hertz. “A survey of local search methods for graph coloring.”

Computers and Operations Research, 33: 1547-2562, 2006.

Notes: Discusses several graph coloring algorithms, including Tabucol, which (even
though over 20 years old) is still frequently used either alone or as part of a hybrid
algorithm. Highlights the differences between different algorithm methods.

81. P. Galinier, A. Hertz, N. Zufferey. “An Adaptive Memory Algorithm for the k-
Coloring Problem.” Discrete Applied Mathematics, 156(2): 267-279, 2008.

Notes: Introduces, describes, and discusses Amacol. Compares and tests Amacol
against Tabucol, GH, DSATUR, Long_TABU, and Short_TABU on the DIMACS
graphs. Concludes that Amacol is competitive with the existing algorithms.

Approved for Public Release; Distribution Unlimited.

85

82. O. Goldreich. Foundations of Cryptography: Fragments of a Book. Weizmann
Institute of Science: 1995.

Notes: Presents the same protocol as most other references with a thorough
description and proof that the protocol is a zero-knowledge proof system. Also
contains a discussion in the section‟s concluding remarks on constant round and
efficient protocols for G3C, as well as explicitly constructs a round efficient zero-
knowledge proof system for G3C.

83. O. Goldreich, A. Kahan. “How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP.” Journal of Cryptology, 9: 167-189, 1996.

Notes: Describes and outlines an efficient (using a constant number of rounds) zero-
knowledge proof system for the graph colorability problem and proves that it satisfies
the necessary properties.

84. O. Goldreich, S. Micali, A. Wigderson. “Proofs that Yield Nothing but Their

Validity or All Languages in NP Have Zero-Knowledge Proof Systems.” Journal of

the ACM 38(1): 691-729, 1991.

Notes: Outlines two protocols: one using locked boxes and keys (for understanding),
the other using a digital implementation (for practical use). Contains a thorough
proof that the protocol is in fact a zero-knowledge interactive proof, as well as a
discussion of how to construct constant-round zero-knowledge proof systems for the
problem.

85. D. Grigoriev, V. Shpilrain. “Zero-Knowledge Authentication Schemes from Actions
on Graphs, Groups, or Rings.”

Notes: Outlines a protocol for k-colorability that is based on sending a commitment
to the coloring through an isomorphic copy of the graph, since colorability is
preserved under isomorphism.

86. A. Hertz, M. Plumettaz, N. Zufferey. “Variable Space Search for Graph Coloring.”

Discrete Applied Mathematics, 156(13): 2551-2560, July 2008.

Notes: Introduces the variable space search (VSS) algorithm as an extension of the
variable neighborhood search (VNS) algorithm. Runs tests on some graphs from the
DIMACS challenge, and compares VSS with TabuCol, PartialCol, GH, MOR and
MMT algorithms.

Approved for Public Release; Distribution Unlimited.

86

87. H.H. Hoos, T. Stutzle. “Local Search Algorithms for SAT: An Empirical

Evaluation.” Journal of Automated Reasoning, 24(4): 421-481, 2000.

Notes: Contains some algorithmic discussion of the graph colorability problem
through transformations from the satisfiability problem. Also contains results from
testing done on solving graph coloring instances by GSAT, Novelty, and WalkSAT.

88. D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon. “Optimization by

Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and
Number Partitioning.” Operations Research, 39(3): 378-406, 1991.

Notes: Presents a few different algorithms for graph coloring based on simulated
annealing. Most of the algorithms require large amounts of time to produce colorings
that are close to optimal. Includes experimental data on random graphs of 1000
nodes.

89. W. Klotz. “Graph Coloring Algorithms.” 2002. Available at: http://www.math.tu-
clausthal.de/Arbeitsgruppen/Diskrete-Optimierung/publications/2002/gca.pdf

Notes: Discusses several different existing algorithms, such as RLF and DSATUR,
and introduces a new algorithm based on a heuristic called BSC: Backtracking
Sequential Coloring. Compares the runtimes and quality of solution for these
algorithms by testing on random graphs on 60 vertices with different edge-densities.

90. S. G. Krantz. “Zero Knowledge Proofs.” Mathematical Adventures for Students and

Amateurs, Spectrum Series, MAA: Washington, D.C., 2006.

Notes: A very basic discussion of 4-colorability with a focus on the encryption
methods used. Contains an introduction to RSA encryption and the idea of zero-
knowledge proof systems.

91. K. Kurosawa, K. Takai. “A Comment on NIZK for 3-Colorability.” Singapore

ICCS/ISITA: 274-278, 1992.

Notes: Outlines and proves a more efficient noninteractive zero knowledge proof
system for 3-colorability based on M. Blum‟s “Noninteractive Zero Knowledge and

its Applications.” Protocol is very similar to Blum‟s with slight modifications.

Approved for Public Release; Distribution Unlimited.

http://www.math.tu-clausthal.de/Arbeitsgruppen/Diskrete-Optimierung/publications/2002/gca.pdf
http://www.math.tu-clausthal.de/Arbeitsgruppen/Diskrete-Optimierung/publications/2002/gca.pdf

87

92. A. Lim, Y. Zhu, Q. Lou, B. Rodrigues. “Heuristic Methods for Graph Coloring

Problems.” ACM Symp. on Applied Computing: 933-939, 2005.

Notes: Introduces a new algorithm based on Tabu search combined with an optimizer
to fix priorities. Tests and compares the algorithm against some basic algorithms.
Testing is done on benchmark geometric graphs from COLORING ‟02.

93. D.W. Matula, L.L. Beck. “Smallest-Last Ordering and Clustering and Graph
Coloring Algorithms.” Journal of the Association for Computing Machinery, 30(3):
417-427, July 1983.

Notes: Goes over the basic ideas of smallest-last ordering for a greedy algorithm.
Presents upper bounds on the number of colors required by the algorithm for specific
classes of graphs.

94. J. Pieprzyk, T. Hardjono, J. Seberry. “Zero Knowledge Proof Systems.” From

Fundamentals of Computer Security. Springer-Verlag: 409-431, 2003.

Notes: Outlines an interactive proof for 3-colorability, which relies on the
assumption that there is a secure probabilistic encryption, as well as a proof that the
protocol is computational zero knowledge. Discusses why either encryption or a bit
commitment scheme is a necessary ingredient in a computationally zero-knowledge
proof system.

95. J. Rothe. “Heuristics versus Completeness for Graph Coloring.” Chicago Journal of

Theoretical Computer Science, 2000(1): 1-16, 2000.

Notes: Studies the complexity of the graph coloring problem when considering input
graphs that can be solved by a given heuristic A (A-G3C). All heuristics are based on
sequential algorithms. Proves that A-G3C is NP-complete for the algorithms
considered.

96. G. I. Simari. “A Primer on Zero Knowledge Protocols.” Universidad Nacional del

Sur: June 27, 2002.

Notes: Introduces and defines the concept of zero-knowledge proof systems.
Outlines the standard zero-knowledge proof system in which the verifier selects one
edge at random. Discusses why this is a zero-knowledge proof system.

Approved for Public Release; Distribution Unlimited.

88

97. T. Stutzle. “Introduction to Stochastic Local Search.” Presentation given at ANTS

2006. Available at:
http://iridia.ulb.ac.be/ants2006/tutorial_slides/stuetzle_tutorial_slides.pdf

Notes: Gives an overview of stochastic search methods such as simulated annealing,
Tabu search, dynamic local search, and iterative local search (and others). Discusses
Tabu search for the graph coloring problem.

98. C. R. Subramanian, M. Furer, C. E. Madhavan. “Algorithms for Coloring Semi-
Random Graphs.” : 125-158, 1998.

Notes: Shows the existence of and describes polynomial-time algorithms that almost
surely succeed in coloring semi-random graphs GSB(n, p, k) for certain ranges of
values for p, i.e. a graph supplied by an opponent that will add each edge with
probability p or 1-p.

EQUITABLE COLORING

99. H. Furmańczyk, M. Kubale. “The Complexity of Equitable Vertex Coloring of

Graphs.” Journal of Applied Computer Science, 13(2): 95-107, 2005.

Notes: Introduces the equitable coloring problem and discusses the complexity of the
problem. Lists which graphs can be equitably colored in polynomial time. Also
introduces two polynomial-time heuristic algorithms based on a greedy method.

100. W. Meyer. “Equitable Coloring.” The American Mathematical Monthly, 80(8): 920-

922, Oct. 1973.

Notes: Introduces the notion of equitable coloring and proves some basic results on
equitable coloring numbers of graphs.

101. “Equitable Coloring.” Wikipedia: The Free Encyclopedia. Available at:
http://en.wikipedia.org/wiki/Equitable_coloring

Notes: Contains a good introduction to the concept of equitable coloring with
examples. Discusses the NP-completeness of the problem and applications.

Approved for Public Release; Distribution Unlimited.

http://en.wikipedia.org/wiki/Equitable_coloring
http://iridia.ulb.ac.be/ants2006/tutorial_slides/stuetzle_tutorial_slides.pdf

89

GRAPH K-EDGE-COLORABILITY

102. R. Venkatesan, L. Levin. “Random Instances of a Graph Coloring Problem are

Hard.” Proc. of the Annual ACM Symposium on Theory of Computing: 217-222,
1988.

Notes: Looks at the graph edge-coloring problem on random digraphs by its
inversion problem: color the edges of the graph so as to obtain the specified coloring.
Proves that these problems are hard on average by reducing it to the random tiling
problem (RTP) and forcing the solver to transform the RTP solution into an edge-
coloring of the graph.

INDEPENDENT SETS/MAXIMUM CLIQUE

103. R. Battiti, M. Brunato. “R-Evo: A Reactive Evolutionary Algorithm for the

Maximum Clique Problem.” Universita Degli Studi di Trento, Technical Report
DIT-07-034: May 31, 2007.

Notes: Introduces R-Evo and RLS-Evo and compares them with EA/G and RLS for
the maximum clique problem. Also discusses model-based algorithms. Contains
data comparing runtime and performance of EA/G against R-Evo on the DIMACS
graphs.

104. I. Bomze, M. Budinich, P.M. Pardalos, M. Pelillo. “The Maximum Clique Problem.”

Handbook of Combinatorial Optimization. Kluwer Academic Publishers, D.Z. Du
and P.M. Pardalos (Eds.): 1999.

Notes: An overview of the different types of heuristic algorithms for solving the
maximum clique problem. Tests the algorithms on the DIMACS graphs.

105. P. Caballero-Gil. “Zero-Knowledge Proof for the Independent Set Problem.” IEICE

Trans. on Fund. of Electronics, Communications, and Computer Science: 1301-1302,
May 2005.

Notes: Presents a zero-knowledge proof system for the independent set problem with
a commitment scheme based on the discrete log problem. Discusses the
efficiency/complexity of the protocol.

Approved for Public Release; Distribution Unlimited.

90

106. L. Cavique, C. Rego, I. Themido. “A Scatter Search Algorithm for the Maximum

Clique Problem.” Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers: 227-244, 2001.

Notes: Introduces a new algorithm based on scatter search (to explore new regions),
and tabu search (to improve the new solutions found). Tests the SS algorithm on the
DIMACS graphs against several different tabu search algorithms.

107. Y. Desmedt, Y. Wang. “Efficient Zero-Knowledge Proofs for Some Practical Graph
Problems.” Lecture Notes in Computer Science: Security in Communication

Networks, 2576: 290-302, 2003.

Notes: Discusses the independent set problem as a special case of the k-independent
set problem. Outlines and proves zero knowledge protocols for both of these
problems, and then exhibits a transformation from the k-independent set problem to
the independent set problem.

108. C. Friden, A. Hertz, D. de Werra. “Tabaris: An Exact Algorithm Based on Tabu
Search for Finding a Maximum Independent Set in a Graph.” Computers Opns. Res.,
17(5): 437-445, 1990.

Notes: Describes, outlines, and discusses the Tabaris algorithm for finding a
maximum independent set in a graph. Also compares Tabaris to another algorithm
called “BALAS”. Tests the algorithms on random graphs that vary in both size and
density.

109. X. Geng, J. Xu, J. Xiao, L. Pan. “A Simple Simulated Annealing Algorithm for the

Maximum Clique Problem.” Information Sciences, 177: 5064-5071, 2007.

Notes: Introduces and tests a simulated annealing algorithm on all 80 DIMACS
maximum clique problem instances. Tests the new algorithm against a recent
efficient algorithm by Xu/Ma (ESA), and also against a trust region heuristic
algorithm by Stanislav/Busygin (TR).

Approved for Public Release; Distribution Unlimited.

91

110. A. Grosso, M. Locatelli, W. Pullan. “Simple Ingredients Leading to Very Efficient

Heuristics for the Maximum Clique Problem.” Journal of Heuristics, 14: 587-612,
2008.

Notes: Discusses iterated local search maximum clique problem algorithms,
including DLS. Introduces two versions of a new algorithm aimed at improving the
currently existing algorithms – one version with a random selection rule and one with
a ranking selection rule.

111. P. Hansen. N. Mladenovic, D. Urosevic. “Variable Neighborhood Search for the

Maximum Clique.” Discrete Applied Mathematics, 145: 117-125, 2004.

Notes: Introduces a new metaheuristic algorithm based on variable neighborhood
search. Tests on DIMACS graphs against genetic algorithms, continuous based
heuristics, tabu search, and RLS. Concludes that VNS is competitive with the current
algorithms.

112. D.S. Johnson, and M.A. Trick. Volume 26: DIMACS Series in Discrete Mathematics

and Theoretical Computer Science. American Mathematical Society, 1996.

Notes: Contains several articles on the maximum clique problem by various authors.

113. K. Katayama, A. Hamamoto, H. Narihisa. “An Effective Local Search for the

Maximum Clique Problem.” Information Processing Letters, 95(5): 503-511, Sept.
2005.

Notes: Introduces the KLS algorithm, based on variable depth search (generalization
of local search). Tests KLS on DIMACS benchmark graphs for the maximum clique
problem on up to 4000 nodes against GENE (genetic local search), ITER (iterated
local search), and RLS.

114. X. Liu, A. Sakamoto, T. Shimamoto. “A Genetic Algorithm for Maximum

Independent Set Problems.” IEEE International Conference on Systems, Man, and

Cybernetics, 3: 1916-1921, Oct. 1996.

Notes: Introduces a genetic algorithm for ISP and compares it with GMCA and
CBH. Tests the algorithms on the DIMACS benchmark graphs for the maximum
clique problem.

Approved for Public Release; Distribution Unlimited.

92

115. E. Marchiori. “A Simple Heuristic Based Genetic Algorithm for the Maximum

Clique Problem.” Proc. of the 1998 ACM Symp. on Applied Computing: 366-373,
1998.

Notes: Introduces the HGA algorithm and tests it on the DIMACS benchmark graphs
for the maximum clique problem against tabu search algorithms and the genetic
algorithm GMCA. Concludes that HGA is competitive with the algorithms tested.

116. P.R.J. Östergård. “A Fast Algorithm for the Maximum Clique Problem.” Discrete

Applied Mathematics, 120: 197-207, 2002.

Notes: Introduces a branch-and-bound algorithm using a vertex order from a coloring
as well as pruning strategies. Tests the algorithm on some of the DIMACS
benchmark graphs for the maximum clique problem and also on random graphs.

117. W. Pullan, H.H. Hoos. “Dynamic Local Search for the Maximum Clique Problem.”

Journal of Artificial Intelligence Research, 25: 159-185, 2006.

Notes: Introduces DLS-MC (stochastic local search algorithm). Describes the five
current best heuristic algorithms. Contains results on testing DLS-MC on all 80
DIMACS instances for the maximum clique problem. Compared DLS-MC with
DAGS, GRASP, k-opt, RLS, GENE, ITER, and QUALEX-MS.

118. F. Rossi, S. Smriglio. “A Branch-and-Cut Algorithm for the Maximum Cardinality
Stable Set Problem.” Operations Research Letters, 28: 63-74, 2001.

Notes: Introduces a new branch-and-cut algorithm for the independent set problem.
Tests the algorithm on DIMACS benchmark graphs for the maximum clique problem
and compares it with other branch-and-bound algorithms.

119. E. Tomita, T. Kameda. “An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique with Computational Experiments.” Journal of Global

Optimization, 37: 95-111, 2007.

Notes: Introduces MCR algorithm, which uses approximate coloring and sorting of
the vertices. Tests the algorithm on random graphs up to 15,000 nodes and DIMACS
benchmark graphs for the maximum clique problem against dfmax, New, and
COCR(COC) algorithms.

Approved for Public Release; Distribution Unlimited.

93

120. E. Tomita, T. Seki. “An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique.” Lecture Notes in Computer Science, 2731: 278-289, 2003.

Notes: Introduces the algorithm MCQ, which is approved upon later by the algorithm
MCR. Contains testing done on DIMACS graphs for the maximum clique problem
against dfmax, New, and COCR algorithms.

121. Q. Zhang, J. Sun, E. Tsang. “An Evolutionary Algorithm with Guided Mutation for
the Maximum Clique Problem.” IEEE Transactions on Evolutionary Computation,
9(2): 192-200, April 2005.

Notes: Introduces the EA/G algorithm. Tests EA/G on the DIMACS benchmark
graphs for the maximum clique problem against HGA and MIMIC. Concludes that
EA/G is competitive with the other algorithms considered.

SATISFIABILITY

122. “Satisfiability Testing or How to Solve Sudoku Puzzles – The DPLL Method.” From

the International Center for Computational Logic. Available at:
http://www.computational-logic.org/iccl/master/lectures/summer07/sat/slides/dpll.pdf

Notes: Gives a description of the satisfiability problem and an overview of the DPLL
method for solving instances of the satisfiability problem.

123. G. Brassard, C. Crepeau. “Non-Transitive Transfer of Confidence: A Perfect Zero-
Knowledge Interactive Protocol for SAT and Beyond.” Proc. of the 27

th
 Annual

Symp. on Foundations of Computer Science: 188-195, 1986.

Notes: Outlines a basic zero-knowledge proof system for the satisfiability problem.
Focuses on the commitment scheme used.

124. G. Brassard, D. Chaum, C. Crepeau. “Minimum Disclosure Proofs.” Journal of

Computer and System Sciences, 37(2): 156-189, Oct. 1988.

Notes: Describes and illustrates a zero-knowledge proof system for the satisfiability
problem. Discusses how the protocol satisfies the properties necessary for a zero-
knowledge protocol.

Approved for Public Release; Distribution Unlimited.

http://www.computational-logic.org/iccl/master/lectures/summer07/sat/slides/dpll.pdf

94

125. S. Cook, D. G. Mitchell. “Finding Hard Instances of the Satisfiability Problem: A

Survey.” DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, 35: 1-17, 1997.

Notes: Details the algorithms DPLL, GSAT, and WalkSAT. Also does some testing
and analysis of the algorithms. Has some discussion on the construction of hard
satisfiability instances.

126. I. Damgard. “Non-Interactive Circuit Based Proofs and Non-Interactive Perfect Zero-

Knowledge with Preprocessing.” Proc. of Eurocrypt: 341-355, 1992.

Notes: Thoroughly outlines a noninteractive proof system for the satisfiability
problem and proves that it satisfies the necessary properties. Proves that the proof
system is zero-knowledge under the QRA.

127. C. Dwork, U. Feige, J. Killian, M. Naor, M. Safra. “Low communication 2-prover
zero-knowledge proofs for NP.” Proc. of the 12

th
 Annual International Cryptology

Conference on Advances in Cryptology: 215-227, 1992.

Notes: Discusses, outlines, and proves a zero-knowledge proof system for the
satisfiability problem with two provers and one verifier.

128. B. Ferris, J. Froehlich. “WalkSAT as an Informed Heuristic to DPLL in SAT

Solving.” Artificial Intelligence Graduate Course taught by Professor Dan Weld:

2005. Available at:
http://www.cs.washington.edu/homes/jfroehli/publications/WalkSAT-DPLL.pdf

Notes: Compares WalkSAT, a stochastic local search algorithm, with DPLL, a
systematic search algorithm. WalkSAT is faster, but incomplete (cannot prove
unsatisfiability), while DPLL-type algorithms are complete but slower.

129. E. Goldberg, Y. Novikov. “BerkMin: A Fast and Robust SAT-Solver.” Proc. of

DATE ’02: 142-149, 2002.

Notes: Compares a new algorithm (BerkMin) with GRASP, SATO, and Chaff, which
it is based off of. Tests BerkMin against these other satisfiability problem solvers and
concludes that BerkMin is more robust (can solve more instances), but is not always
faster.

Approved for Public Release; Distribution Unlimited.

http://www.cs.washington.edu/homes/jfroehli/publications/WalkSAT-DPLL.pdf

95

130. H.H. Hoos, T. Stutzle. “Local Search Algorithms for SAT: An Empirical
Evaluation.” Journal of Automated Reasoning, 24(4): 421-481, 2000.

Notes: Introduces, discusses, compares and evaluates the stochastic local search
algorithms WalkSAT and GSAT thoroughly.

131. H. Jia. “Hard Instances with Hidden Solutions.” PhD Dissertation, University of

New Mexico: December, 2007.

Notes: Introduction to several algorithms that exist for solving instances of the
satisfiability problem and 3-SAT, as well as a proposed method for generating
difficult test cases for these algorithms. Algorithms described: DPLL, WalkSAT,
zChaff, and SP.

132. J. Marques-Silva. “The Impact of Branching Heuristics in Propositional Satisfiability

Algorithms.” Proc. of the 9
th

 Portuguese Conference on Artificial Intelligence:

Progress in Artificial Intelligence: 62-74, 1999.

Notes: Describes several branching heuristics that are used in effective satisfiability
solvers such as GRASP, SATO, and rel_sat. Runs tests on these algorithms against
other algorithms that do not use the same techniques to examine their effectiveness.

133. J.P. Marques-Silva, K.A. Sakallah. “GRASP: A Search Algorithm for Propositional

Satisfiability.” IEEE Transactions on Computers, 48(5): 506-521, May 1999.

Notes: Introduces, outlines, and discusses the GRASP algorithm for solving the
satisfiability problem. Contains experimental results obtained from testing GRASP
against several other well-known algorithms such as DPLL, GSAT, etc.

134. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik. “Chaff: Engineering
an Efficient SAT Solver.” Proceedings of the 38

th
 Conference on Design

Automation: 530-535, 2001.

Notes: Describes the Chaff algorithm for solving the satisfiability problem. Also
includes a description of the DPLL algorithm as comparison, with some comments on
other currently popular algorithms.

Approved for Public Release; Distribution Unlimited.

96

135. D.N. Pham, C. Gretton. “gNovelty
+
.” From the SAT 2007 Competition web site.

Available at: http://www.satcompetition.org/2007/gNovelty+.pdf

Notes: Introduces and discusses the satisfiability solver gNovelty+, based off of the
first and second place winners in the random category of the 2005 SAT competition.
The program was used in the 2007 SAT competition (won gold in the random SAT
category).

136. H. Zhang. “SATO: An Efficient Propositional Prover.” Proc. of the 14

th

International Conference on Automated Deduction: 272-275, 1997.

Notes: Describes the update to SATO 3.0 and contains some results of testing SATO
3.0 against past versions of SATO as well as other popular satisfiability solver
algorithms, such as DPLL, GRASP, etc. Concludes that SATO either performs best
or second best on all sets of data considered.

MINIMUM LABEL SPANNING TREE PROBLEM

137. T. Brüggemann, J. Monnot, G.J. Woeginger. “Local Search for the Minimum Label

Spanning Tree Problem with Bounded Color Classes.” Operations Research Letters,
31(3): 195-201, 2003.

Notes: Discusses the complexity of the minimum label spanning tree problem when
every color appears at most r times in the input graph. Introduces local search
algorithms for this modified problem.

138. R. Cerulli, A. Fink, M. Gentili, S. Voß. “Metaheuristics Comparison for the

Minimum Labeling Spanning Tree Problem.” The Next Wave in Computing,
Optimization, and Decision Technologies. G. Golden, S. Raghavan, E. Wasil (Eds.),
Springer-Verlag: 93-106, 2005.

Notes: Introduces new metaheuristic algorithms for the minimum label spanning tree
problem. The metaheuristics implemented are SA, reactive tabu search, the Pilot
method, and VNS. Compares the new algorithms with MVCA.

Approved for Public Release; Distribution Unlimited.

http://www.satcompetition.org/2007/gNovelty+.pdf

97

139. R.S. Chang, S.J. Leu. “The Minimum Labeling Spanning Trees.” Information

Processing Letters, 63(5): 277-282, 1997.

Notes: Proves that the minimum label spanning tree problem is an NP-complete
problem and introduces two algorithms for approximating the solution. This paper
was the first to consider this problem.

140. S. Consoli. “The Development and Application of Metaheuristics for Problems in

Graph Theory: A Computational Study.” Thesis for PhD in School of Information

Systems, Computing and Mathematics, Brunel University, UK: November, 2008.

Notes: Introduces new algorithms for the minimum label spanning tree problem.
These include GRASP, VNS, and a hybrid local search method. The new algorithms
are compared to MGA (modified genetic algorithm) and the Pilot method.

141. S. Consoli, K. Draby-Downman, N. Mladenovic, J.A.M. Perez. “Greedy

Randomized Adaptive Search and Variable Neighbourhood Search for the Minimum
Labelling Spanning Tree Problem.” European Journal of Operational Research, 196:
440-449, 2009.

Notes: Introduces GRASP and VNS algorithms for the minimum label spanning tree
problem. Tests the algorithms against the Pilot algorithm and several others. Testing
is done on graphs of order up to 500 and label sets of size up to 625 labels.

142. S.O. Krumke, H.C. Wirth. “On the Minimum Label Spanning Tree Problem.”

Information Processing Letters, 66(2): 81-85, 1998.

Notes: Proves that there cannot exist a polynomial time constant factor
approximation for the minimum label spanning tree problem unless P = NP. Tests the
performance of the algorithms previously created by Chang and Leu (the authors that
first introduced the problem).

143. J. Nummela, B.A. Julstrom. “An Effective Genetic Algorithm for the Minimum-

Label Spanning Tree Problem.” Proc. of the 8
th

 Annual Conference on Genetic and

Evolutionary Computation: 553-558, 2006.

Notes: Introduces several new genetic algorithms for the minimum label spanning
tree problem. Tests and compares the new algorithms against MVCA on random
graphs.

Approved for Public Release; Distribution Unlimited.

98

144. Y. Xiong. “The Minimum Labeling Spanning Tree Problem and Some Variants.”

Thesis for PhD at the University of Maryland: 2005.

Notes: Contains an introduction to the minimum label spanning tree problem.
Discusses a particularly difficult class of graphs for the MVCA algorithm. Introduces
new algorithms for the problem. Tests and compares the new algorithm on random
graphs.

145. Y. Xiong, B. Golden, E. Wasil. “Improved Heuristics for the Minimum Label

Spanning Tree Problem.” IEEE Transactions on Evolutionary Computation, 10(6),
700-703, 2006.

Notes: Introduces new algorithms that are either modified MVCA or modified
genetic algorithms. Tests the new algorithms on random graphs and compares them
to the unmodified versions of MVCA and genetic algorithms.

146. Y. Xiong, B. Golden, E. Wasil. “A One-Parameter Genetic Algorithm for the
Minimum Labeling Spanning Tree Problem.” IEEE Transactions on Evolutionary

Computation, 9(1): 55-60, 2005.

Notes: Introduces a one-parameter genetic algorithm for the minimum label spanning
tree problem. Tests and compares the new algorithm to MVCA. Concludes that the
new algorithm is competitive with MVCA.

147. Y. Xiong, B. Golden, E. Wasil. “Worst-Case Behavior of the MVCA Heuristic for

the Minimum Labeling Spanning Tree Problem.” Operations Research Letters,
33(1): 77-80, 2005.

Notes: Analyzes the MVCA algorithm and presents a new worst-case ratio for the
algorithm. Introduces a family of graphs that obtain the new ratio, proving that the
ratio cannot be reduced further.

GRAPH PARTITIONING PROBLEM

148. R. Baños, C. Gil, J. Ortega, F.G. Montoya. “Multilevel Heuristic Algorithm for

Graph Partitioning.” Lecture Notes in Computer Science, 2611: 143-153, 2003.

Notes: Introduces a multilevel algorithm for solving the graph partitioning problem.
Tests and compares the new algorithm with METIS, another multilevel algorithm for
the problem, on the benchmark graphs maintained by Walshaw.

Approved for Public Release; Distribution Unlimited.

99

149. T.N. Bui, B.R. Moon. “Genetic Algorithm and Graph Partitioning.” IEEE

Transactions on Computers, 45(7): 841-855, July 1996.

Notes: Introduces hybrid genetic algorithms for the graph partitioning problem.
Tests and compares the algorithms against the multistart KL algorithm and the SA
algorithm on the graphs used by Johnson, et al., 1989.

150. A. Felner. “Finding Optimal Solutions to the Graph Partitioning Problem with

Heuristic Search.” Annals of Mathematics and Artificial Intelligence, 45(3-4): 293-
322, Dec. 2005.

Notes: Formats the graph partitioning problem as a search problem and then applies
heuristic methods to solve the problem. The algorithm does not return suboptimal
solutions. Tests and compares this approach with the current best algorithms on
randomly generated graphs.

151. L. Grady, E.L. Schwarts. “Isoperimetric Partitioning: A New Algorithm for Graph

Partitioning.” SIAM Journal of Scientific Computing, 27(6): 1844-1866, 2006.

Notes: Introduces a new algorithm for the graph partitioning problem based on
optimization of the combinatorial isoperimetric constant. Tests and compares the
algorithm against the spectral partitioning method and METIS on various classes of
graphs. Concludes that the algorithm gives slightly higher averages than the other
algorithms (like multilevel KL).

152. D.S. Johnson, C.R. Aragon, L.A. McGeoch, C. Schevon. “Optimization by

Simulated Annealing: an Experimental Evaluation, Part I, Graph Partitioning.”

Operations Research, 37: 865-892, 1989.

Notes: Introduces a new simulated annealing algorithm for the graph partitioning
problem. Compares it to existing algorithms like KL and local optimization methods
by testing the algorithms on both standard and non-standard random graphs.

153. B.W. Kernighan, S. Lin. “Partitioning Graphs.” The Bell System Technical Journal:

291-307, Feb. 1970.

Notes: Introduces the heuristic Kernighan-Lin algorithm. Concludes that the
algorithm is practical for solving large instances of the graph partitioning problem.

Approved for Public Release; Distribution Unlimited.

100

154. Y.H. Kim, B.R. Moon. “Lock-Gain Based Graph Partitioning.” Journal of

Heuristics, 10: 37-57, 2004.

Notes: Introduces the lock-gain based algorithm for the graph partitioning problem.
Uses a new method for selecting vertices to move between partition classes. Tests the
algorithm on benchmark instances from other publications (Johnson, et al., 1989, and
Bui and Moon, 1996) and compares it to existing algorithms.

155. R.Z. Loureiro, A.R.S. Amaral. “An Efficient Approach for Large Scale Graph

Partitioning.” Journal of Combinatorial Optimization, 13: 289-320, 2007.

Notes: Introduces some greedy heuristic algorithms for the graph partitioning
problem. Tests and compares the algorithm on benchmark instances from the graph
partitioning archive maintained by Walshaw.

GRAPH DATABASES

141. The Graph Partitioning Archive. http://staffweb.cms.gre.ac.uk/~wc06/partition/
(accessed July 2010). Maintained by Chris Walshaw.

Notes: Database with test sets for the graph partitioning problem.

142. The Stanford GraphBase. http://www-cs-faculty.stanford.edu/~uno/sgb.html
(accessed July 2010). Maintained by Donald Knuth.

Notes: Database with general graphs for any problem. Described in:

Knuth, Donald E. “The Stanford GraphBase: A Platform for Combinatorial

Algorithms.” Proceedings of the 4
th

 Annual ACM-SIAM Symposium on Discrete

Algorithms, 1993: 41-43.

143. http://www.sergioconsoli.com/MLSTP.htm (accessed August 2009). Maintained by
Sergio Consoli.

Notes: Database with test sets for the minimum label spanning tree problem.

144. The Harwell-Boeing Collection. http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/ (accessed July 2010).

Notes: Database with test sets of matrices for the minimum bandwidth problem.

Approved for Public Release; Distribution Unlimited.

http://staffweb.cms.gre.ac.uk/~wc06/partition/
http://www-cs-faculty.stanford.edu/~uno/sgb.html
http://www.sergioconsoli.com/MLSTP.htm
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/

101

145. TSPLIB. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html (accessed July
2010). Maintained by Gerhard Reinelt.

Notes: Contains instances for numerous variations of the traveling salesman problem.

146. The Graph Database. http://amalfi.dis.unina.it/graph/ (accessed July 2010).

Maintained by SIVALab.

Notes: Database with test sets of graphs for the sub-graph isomorphism problem.
Described in:

De Santo, M., P. Foggia, C. sansone, and M. Vento. “A Large Database of Graphs

and Its Use For Benchmarking Graph Isomorphism Algorithms.” Pattern

Recognition Letters 24(2003): 1067-1079.

Approved for Public Release; Distribution Unlimited.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
http://amalfi.dis.unina.it/graph/

